
NOD32 for Linux/BSD  
Mail Server
Installation Manual
and User’s documentation

w e  p r o t e c t  d i g i t a l  w o r l d s



�

Table of contents

1. Introduction  ........................................................... 3
2. Installation .............................................................. 5
3. Product’s Roadmap .................................................. 7
4. Integration with E-mailMessaging System ................11
4.1. Scanning of inbound e-mail messages ............................... 13
4.1.1. Renaming the original MDA and its replacement by 
  NOD3 2MDA .................................................................... 13
4.1.2. Setting of NOD32MDA (in MTA) as MDA........................... 14
4.1.2.1. Setting NOD32MDA in Sendmail MTA ........................... 14
4.1.2.2. Setting NOD32MDA in Postfix MTA ............................... 15
4.1.2.3. Setting NOD32MDA in Qmail MTA ................................ 16
4.1.2.4. Setting NOD32MDA in MTA Exim version 3 ................... 17
4.1.2.5. Setting NOD32MDA in MTA Exim version 4 ................... 19
4.2. Scanning of outbound e-mail messages ............................ 20
4.3. Content Filtering in MTA ..................................................... 22
4.3.1. Content filtering in MTA Postfix ....................................... 22
4.3.2. Content filtering in MTA Sendmail ................................... 23
4.3.3. Content filtering in MTA Exim 3 ....................................... 23
4.3.4. Content filtering in MTA Exim 4 ....................................... 25
4.3.5. Content filtering in MTA Qmail ........................................ 26
4.4. Alternative methods of content filtering ............................ 27
4.4.1. Scanning e-mail messages using AMaViS........................ 27
4.4.1.1. amavis .......................................................................... 27
4.4.1.2. amavisd ........................................................................ 28
4.4.1.3. amavisd-new ............................................................... 28
5. Important NOD32LMS/NOD32BMSMechanisms ..........31
5.1. User Specific Configuration ................................................. 32
5.2. Handle Object Policy .......................................................... 33
5.3. Black-list and white-list ..................................................... 33
5.4. Samples Submission System .............................................. 35
6. NOD32 System Update andMaintenance ...................37
6.1. Basic concept of NOD32 system update .............................. 38
6.1.1. NOD32 mirror creation..................................................... 38
6.1.2. Generation of NOD32 scanner loading modules .............. 38
6.2. Automatic update of the virus definitions database ........... 39
7. Tips and Tricks .........................................................41
7.1. Dropping messages marked by NOD32 
  as deleted in MTA Postfix ................................................ 42
7.2. NOD32LMS/NOD32BMS and TLS support in MTA ................ 42
8. Let us know ............................................................45

NOD32 for Linux/BSD Mail Server, First Edition
Published on 6th December 2006
Copyright © 2006 Eset, s.r.o.

NOD32 for Linux/BSDMail Server was developed by 

NOD32 for Linux Mail Server was developed in 
co-operation with ProWeb Consulting. For more 
information visit www.pwc.sk.
All rights reserved. No part of this documentation 
may be reproduced, stored in a retrieval system or 
transmitted in any form or by any means, electronic, 
mechanical, photocopying, recording, scanning, or 
otherwise without a permission in writing from the 
author.
Eset, s.r.o. reserves the right to change any of the 
described application software without prior notice.

NOD32 for Linux/BSD Mail Server

Eset, s.r.o. For more information visit www.nod32.com.sg.



Chapter 1:

Introduction

1  


In
tr

od
uc

tio
n



�

Dear user, you have acquired NOD32 for Linux/BSD Mail Server - NOD32LMS/NOD32BMS - probably the best anti-
virus system running under the Linux/BSD OS. As you will soon find out, the system using, the state-of-the-art NOD32 
scanning engine, has unsurpassed scanning speed and detection rate, combined with a very small footprint that makes 
it the ideal choice for any Linux/BSD OS server.

In the rest of this chapter we review a key features of the system.
•  NOD32 scanning engine algorithms provide both the highest detection rate and the fastest scanning times.
•  The system is developed to run on the single-processor units as well as on the multi-processor units.
•  It includes unique advanced heuristics for Win32 worms and back-doors.
•  Inbuilt NOD32 archivers unpack archived objects without the need for any external programs.
•  In order to increase speed and efficiency of the system, its architecture is based on the running daemon (resident 

program) where all the scanning requests are sent to.
•  The system supports selective scanner configuration specific for user or client/server identification.
•  Six various levels of logging can be configured to get information about system activity and infiltrations.
•  One of the major advantages is the fact that the system installation does not require external libraries or programs 

except for LIBC.
•  The system can be configured to notify any person in case of detected infiltration.
•  Information about infiltration can be configured to be written into an e-mail header, footer and subject.
•  The system is MTA-independent, i.e. it does not depend on Mail Server used.

To run efficiently, the system requires just 16MB of hard-disk space and 32MB of RAM. The NOD32LMS/NOD32BMS  
runs smoothly under the 2.2.x, 2.4.x and 2.6.x LinuxOS kernel versions and also under 5.x, 6.x FreeBSD OS kernel 
versions. The NOD32LMS/NOD32BMS system supports most popular server software including Sendmail, Postfix, Qmail, 
Exim, etc.

From lower-powered, small office servers to enterprise-class ISP servers with thousands of users, the system delivers 
the performance and scalability you expect from a UNIX based solution and the unequaled security of NOD32.

NOD32 for Linux/BSD Mail Server



Chapter 2:

Installation

2  


In
st

al
la

tio
n



�

This product is distributed as a binary file. Its format for Linux OS is:

nod32ls.i386.ext.bin

where ’ext’ is a Linux OS distribution dependent suffix, i.e. ’deb’ for Debian Linux OS distribution, ’rpm’ for RedHat and 
SuSE Linux OS distributions, ’tgz’ for other Linux OS distributions.

Note that we support also RedHat Ready and Novell (SuSE) Ready variation of the product �. The RedHat and Novell 
(SuSE) Ready variation of the binary file format is:

nod32ls-rsr.i386.rpm.bin

Slightly different format is used to name the binary file for BSD OS,

nod32bs.i386.ext.tgz.bin

where ’ext’ stands for BSD OS distribution dependent suffix, i.e. ’fbs4’ for FreeBSD 4.xx, ’fbs5’ for FreeBSD 5.xx and 
’fbs6’ for FreeBSD 6.xx OS distributions.

In order to install or update the product on Linux OS, use the statement:

sh ./nod32ls.i386.ext.bin

resp. the RedHat Ready or Novell (SuSE) Ready variation of the product is installed using the following statement:

sh ./nod32ls-rsr.i386.rpm.bin

In case of BSD OS, the install statement is as follows.

sh ./nod32bs.i386.ext.tgz.bin

As a result the User License Acceptance Agreement related with the product is shown. Once you have confirmed 
the Acceptance Agreement, the whole installation package is extracted into the current working directory and relevant 
information regarding installation or update of the package extracted as well as information necessary for uninstall the 
already installed package is printed into terminal. 

Once the package is installed and the main NOD32 daemon service is running, in Linux OS you can check its operation 
by using command:

ps -C nod32d

In case of BSD OS you can use a similar command:

ps -ax nod32d | grep nod32d

You will see the following (or similar) message on return:

PID 	 TTY	   TIME		    CMD 
2226 	  ? 	 00:00:00		 nod32d 
2229 	  ? 	 00:00:00		 nod32d

where at least two main NOD32 daemon ’nod32d’ processes running in the background have to be present. One of 
the processes is so-called process and threads manager of the system. The other serves as NOD32 scanning process.

� The difference from the original RedHat and SuSE Linux OS package is that the RedHat Ready and Novell (SuSE) Ready package 
meets criteria defined by FHS (File-system Hierarchy Standard defined as a part of Linux Standard Base) document required by the 
RedHat Ready and Novell (SuSE) Ready certificate. This means in particular that the package is installed as an add-on application, 
i.e. the primary installation directory is ’/opt/eset/nod32’ instead of the base Linux OS directory structure. However, there are more 
differences between the original and ’Ready’ variation of the product that are beyond the scope of this document.

NOD32 for Linux/BSD Mail Server



Chapter 3:

Product’s Roadmap

3  


Pr
od

uc
t’s

 R
oa

dm
ap



�

Once the product package has been successfully installed, it is time to become familiar with its content.
The structure of the NOD32LMS/NOD32BMS is shown in the figure 3-1. The system is composed of the following 

components.

CORE

Core of the NOD32LMS/NOD32BMS consists of main NOD32 system control and scanning daemon module nod32d. 
The daemon uses NOD32 API library libnod32.so and NOD32 loading modules nod32.00X to provide essential system 
tasks: anti-virus scanning, maintenance of the agent daemon processes, maintenance of the samples submission system, 
logging, notification, etc.. To get detailed information on the main NOD32 system control and scanning daemon, please 
refer to nod32d(8) manual page.

AGENTS

The purpose of NOD32 agent modules is to integrate the NOD32LMS/NOD32BMS with the e-mail messaging system 
environment. Their functionality is build with respect to needs of most common e-mail messaging systems in the 
present. Please note a special chapter in this document devoted to the topic.

UPDATE

The update utilities create a particular fraction of the system. They are built with only one purpose, i.e. update of 
NOD32  loading  modules  containing  for instance virus signatures database, archives support, advanced heuristics 
support etc. Please notice a special chapter in this document devoted to the topic.

CONFIGURATION

Proper configuration is the most important condition for the system operation. Therefore we describe all the related 
components in the rest of this chapter. We also strongly recommend to read nod32.cfg(5) manual page, an essential 
information source regarding NOD32LMS/NOD32BMS configuration.

After  the  product package is successfully installed, all the components related with its configuration and 
authorization are stored in directory

NOD32 for Linux/BSD Mail Server

Figure 3-1. Structure of NOD32LMS/NOD32BMS.

NOD32CLI

NOD32MDA

NOD32PIPE

NOD32SMFI

NOD32SMTP

AGENTS

license

nod32.cfg

scripts

templates

extern

CONFIGURATION

UPDATE

nod32_update

nod32update

NOD32D LIBNOD32.SO NOD32.00X

CORE



�

/etc/nod32

Note that in case of RedHat Ready and Novell (SuSE) Ready variation of the NOD32 for Linux Mail Server the 
configuration and authorization directory is

/etc/opt/eset/nod32

The directory consists of the following files.

nod32.cfg

This is the most important configuration file as it maintains the major part of the product functionality. For this 
reason the file is further referred to as ‚main configuration file‘ or ‚main NOD32 configuration file‘. After exploring the 
file you  can  see  that it is built from various parameters distributed within sections. Note the section names always 
enclosed in square brackets. In the main configuration file there  is always one global and several so-called agent 
sections. Parameters in global section are used to define configuration options of main NOD32 daemon ‚nod32d‘ as 
well as default values of NOD32 scanning engine configuration options. Parameters in agent sections are used to define 
configuration options of so-called agents, i.e. modules used to intercept various data flow types in the computer and 
in its neighborhood and prepare this data for anti-virus scanning. Note that besides the number of parameters used 
for the system configuration, there is also a number of rules determining organization of configuration file. To become 
familiar with this knowledge. please refer to nod32.cfg(5), nod32d(8) manual page and also to manual pages related 
to relevant agents.

license

This directory is used to store the product license key you have acquired from your vendor. Note that the main 
NOD32 daemon will always check only this directory to evaluate license key validity unless it is redefined by the main 
configuration file parameter ’nod32_lic_dir’.

scripts/nod32d_license_warning_script

This script, if enabled by main configuration file parameter ’license_warn_enabled’, is executed since 30 days (once 
per day) before product license expiration. It is used to send e-mail notification about the expiration status to system 
administrator.

scripts/nod32d_script

This script, if enabled by main configuration file parameter ’exec_script’, is executed in case the infiltration has been 
detected by the anti-virus system. It is used to send e-mail notification about the event to system administrator.

templates/lms_sig_*.html.example

These files are html templates used to define text of messages inserted as a footnote into the scanned e-mails. 
To enable these html templates the ‚example‘ suffix must be removed from all of the template file names. Note also 
that the appearance of the e-mail messages footnotes is maintained by main configuration file parameter ’write_to_
footnote’. The meaning of individual template files is as follows.

The following footnote templates are used in e-mails found as infected:

chapter 3 / Product’s Roadmap



10

e-mail header	 | From: 
.			   | To: 
-------------------------- 
e-mail body	 | text of e-mail body 
.			   | 
.			   | content of lms_sig_header_infected.html 
.	 	 	 | list of infiltrations found by the scanner 
.			   | content of lms_sig_footer_infected.html 

The following footnote templates are used in e-mails found as clean:

e-mail header 	 | From: 
.			   | To: 
-------------------------- 
e-mail body	 | text of e-mail body 
.			   | 
.			   | content of lms_sig_header_clean.html 
.			   | list of objects scanned by the scanner 
.			   | content of lms_sig_footer_clean.html 

The following footnote templates are used in e-mails that could not be scanned:

e-mail header 	 | From: 
.			   | To: 
-------------------------- 
e-mail body	 | text of e-mail body 
.			   | 
.			   | content of lms_sig_header_not_scanned.html 
.			   | list of object scanned by the scanner 
.			   | content of lms_sig_footer_not_scanned.html

NOD32 for Linux/BSD Mail Server



Chapter 4:

Integration with E-mail 
Messaging System

4  


In
te

gr
at

io
n 

w
ith

 E-
m

ai
l M

es
sa

gi
ng

 Sy
st

em



12

This chapter describes integration of the NOD32LMS/NOD32BMS with the variety of known email messaging systems. 
Knowledge of e-mail messaging system basic principles (figure 4-1) is of paramount importance for understanding of 
the NOD32LMS/NOD32BMS operation.
MTA - Mail Transport Agent
A program (for instance sendmail, postfix, qmail, exim, 
etc.) providing e-mail messages transfer among local and 
remote domains.
MDA - Mail Delivery Agent
A program (for  instance maildrop, procmail, deliver, local.
mail, etc.) providing delivery of locally addressed e-mail 
messages into particular mailboxes.
MUA - Mail User Agent
A program (for instance MS Outlook, Mozilla Mail, 
Eudora, etc.) providing access and management of e-mail 
messages, i.e. reading, composing, printing etc., stored in 
mailboxes.
MAILBOX
A file or a file structure on a disk serving as the storage 
space for e-mail messages. Note that there are several 
formats of MAILBOX in Linux/BSD OS: an old fashioned 
format where e-mails for each user are stored sequentially 
in one user appropriate file located in directory ‚/var/spool/mail‘; MBOX (a bit newer but still an old format) with e-mails 
stored sequentially in one file located within user home directory; MAILDIR with e-mails stored in a separate files within 
a hierarchical directory structure.

The e-mail server receives data communication typically using SMTP - Simple Mail Transfer Protocol communication. 
The received message is transferred by MTA either to another remote e-mail messaging system or it is delivered using 
local MDA into particular MAILBOX (we assume each local network user owns a MAILBOX located at the server disk). 
Note that it is responsibility of the user‘s local MUA to provide download and correct interpretation of the message at 
the user’s computer. When retrieving data from MAILBOX the MUA uses typically POP3 - Post Office Protocol or IMAP 
- Internet Message Access Protocol to communicate with the MTA. To send data to the Internet the SMTP protocol 
communication is used. 

The NOD32LMS/NOD32BMS operating principle is based on data communication interception and scanning at the 
various phases of its transfer. The interception locations are marked in the figure 4-1 by symbols S1, S2 and S3.
S1
Scanning of inbound e-mail messages, i.e. messages with the target address corresponding to the destination located 
inside the local domain.
S2
Scanning of outbound e-mail messages, i.e. messages bound to some remote Internet domain via its target address.
S3
Bi-directional e-mail messages scanning, i.e. content filtering in MTA.

The rest of this chapter reviews methods of integration of NOD32LMS/NOD32BMS with variety of supported 
messaging systems.

NOD32 for Linux/BSD Mail Server

MTA

MDA

Mailbox

MUA

TCP port 25 (SMPT) (SMPT)

e-mail server

S1 PIPE

S3

FILE

S2

TCP port 110 (POP3)
OR 143 (IMAP)

Client Clients
Computer

TCP port 25 (SMPT)

INTERNET

Figure 4-1. Scheme of UNIX OS e-mail messaging system.



13

4.1. Scanning of inbound e-mail messages

Scanning of the inbound e-mail messages is 
performed during the messages transfer between MTA 
and MDA. Scheme of this process is in the figure 4-2.

The incoming e-mail is intercepted by nod32mda 
module, scanned by main NOD32 daemon ’nod32d’ and 
delivered to MAILBOX using original MDA. As shown in 
the figure, the virus scanning can be enabled by proper 
configuration setting of MTA and nod32mda module. It is 
also apparent that the solution is MDA independent.

Note that the majority of mail servers use procmail 
or maildrop (MDA). The nod32mda module supports 
any MDA. In particular the following MDAs were tested: 
procmail, maildrop, deliver and local.mail.

Next sections reviews two different procedures of 
nod32mda module integration with e-mail messaging 
system.

4.1.1. Renaming the original MDA and its replacement by NOD32MDA

This is a simple approach even without a need to make any changes in MTA configuration file. The idea is based on 
replacing of original MDA by nod32mda module. Note that the information, on what MDA is used  by  your  MTA,  can be 
grabbed only by exploring the MTA configuration file. Let‘s assume that the MDA used is for instance /usr/bin/procmail.
You simply rename the original procmail binary file for instance to procmail.real:

mv /usr/bin/procmail /usr/bin/procmail.real

and  create  the  soft  link  to module nod32mda with the name ‚procmail‘:

ln -s /usr/bin/nod32mda /usr/bin/procmail

In case of RedHat Ready and/or Novell (SuSE) Ready variation of NOD32 for Linux Mail Server the installation path to 
the nod32mda is different so an appropriate statement is as follows:

ln -s /opt/eset/nod32/bin/nod32mda /usr/bin/procmail

With the above modifications, you ensure that all messages originally sent to MDA are primarily catched by 
nod32mda module. Still  there remains to provide that all messages processed by nod32mda will be sent to the original 
MDA ‚procmail‘ binary file (currently named ‚procmail.real‘). To do so, just modify parameter ‚mda_path‘ within section 
[mda] of main NOD32 configuration file in the following way:

mda_path = “/usr/bin/procmail.real“

After the modifications yet enter

/etc/init.d/nod32d reload

and newly created configuration will be reread by the system.
Note that we have used ‚procmail‘ MDA in this case, but the advantage of the procedure is that it can be repeated 

with arbitrary known MDA. Disadvantage of this method, on the other hand, is that after original MDA upgrade your 

chapter 4 / Integration with E-mail Messaging System

FILE FILE

FILE

PIPE

PIPE NOD32D

MTA

NOD32MDA

Mailbox

MDA

MTA

Mailbox

MDA

Figure 4-2. Inbound e-mail messages delivery without 
(the left part of  the  figure) and with (the right part of the 
figure) NOD32 scanning.



14

configuration will be broken as the new version of MDA will cancel the link to nod32mda module.

4.1.2. Setting of NOD32MDA (in MTA) as MDA

This section contains a more rigorous approach to provide scanning of inbound messages.
Note: Some MTA modules may be configured to not use MDA component for e-mail messages delivery. In this case, 

it is necessary to configure them in a way to use any, by NOD32LMS/NOD32BMS supported MDA (for instance procmail 
or maildrop).

4.1.2.1. Setting NOD32MDA in Sendmail MTA

First one has to grab information on the MDA used by Sendmail. This can be found in Sendmail configuration 
file ’/etc/mail/sendmail.cf’ (some older versions use the ‚/etc/sendmail.cf‘). In the section ‚Local and Program Mailer 
specification‘ find the parameter ’P’ in sentence starting with ‚Mlocal‘. This parameter represents the full path to the 
MDA used. In the same sentence you will see the parameter ‚A‘ representing the MDA command line used.

Replace the path at parameter ’P’ with nod32mda module path and the name at parameter ’A’ with nod32mda 
module name to provide complete replacement of original MDA by nod32mda module. Note that the command line 
parameters present at the parameter ’A’ must stay the same as before replacement. For instance, if the original MDA 
component path is /usr/bin/procmail, the appropriate sentence in the Sendmail configuration file can be:

Mlocal, P=/usr/bin/procmail, F=lsDFMAw5:/|@qSPhnu9, 
S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, 
T=DNS/RFC822/X-Unix, 
A=procmail -t -Y -a $h -d $u

After the modifications have been performed, the appropriate sentence will be the following:

Mlocal, P=/usr/bin/nod32mda, F=lsDFMAw5:/|@qSPhnu9, 
S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, 
T=DNS/RFC822/X-Unix, 
A=nod32mda -t -Y -a $h -d $u

Note that in case of RedHat Ready and/or Novell (SuSE) Ready variation of NOD32 for Linux Mail Server the 
nod32mda module path is different, so an appropriate Sendmail configuration file sentence will be as follows.

Mlocal, P=/opt/eset/nod32/bin/nod32mda, F=lsDFMAw5:/|@qSPhnu9, 
S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, 
T=DNS/RFC822/X-Unix, 
A=nod32mda -t -Y -a $h -d $u

Warning: In case you are reading the ASCII form of this guide, do not drag and drop any of above sentences, since 
it may not work. The reason is that the command line switches present at parameter ’A’ of the sentence depend on the 
version of original MDA and thus may not work in your case.

With the above modifications you have ensured that all the e-mail messages originally sent to MDA will be catched 
by nod32mda module. Yet there remains to provide that all messages processed primarily by nod32mda will be sent to 
the original MDA for further delivery. In order to do so, just modify ‘mda_path‘ parameter within [mda] section of main 
NOD32 configuration file. In case the original MDA is ‘/usr/bin/procmail‘ the ‘mda_path‘ parameter will be as follows:

mda_path = “/usr/bin/procmail“

Note (for Linux Debian users): The Debian distribution uses ’/usr/lib/sm.bin/sensible-mda’ as MDA. Note that this is 

NOD32 for Linux/BSD Mail Server



15

not a full-blown MDA, it is rather a wrapper; the ‘mda_path‘ parameter in this case has the following format:

mda_path = “/usr/lib/sm.bin/sensible-mda“

To reread of newly created NOD32 configuration, enter the following command:

/etc/init.d/nod32d reload

To accomplish the whole procedure, one has to restart the MTA Sendmail.
Note that NOD32LMS/NOD32BMS provides you with the option to define NOD32 scanning engine parameters 

individually for recipient users (resp. recipient domains). In this case it is necessary to pass the information about the 
recipient user to nod32mda module using its command line interface. Note that in case you would like to pass any 
command line parameter to the whole nod32mda agent it is necessary to prepend the parameter by sentence ‚--‘, 
otherwise the parameter will  be assumed to be passed to original MDA specified by the ‘mda_path‘ parameter. Thus 
for instance to pass command line option --user  to nod32mda agent the above discussed parameter ‘A‘ of Sendmail 
configuration file has to be defined in a following way:

A=nod32mda -t -Y -a $h -d $u -- --user $u

With this setting a special section [user], if defined in NOD32 configuration file, will be used by main NOD32 daemon 
for scanning.

4.1.2.2. Setting NOD32MDA in Postfix MTA

First one has to grab information on the MDA used by Postfix. This can be found in Postfix configuration file ’/etc/
postfix/main.cf’. The Postfix authors have written a helper utility ‘postconf‘ to work with the file, so we will use it in this 
procedure. Thus by entering command

postconf mailbox_command

you can receive the following information on return:

mailbox_command = maildrop -d “$USER“ “$EXTENSION“

From the line above you can see that the MDA used by Postfix is program called ’maildrop’. In order to replace the 
original MDA by nod32mda module, enter the following command

postconf -e ’mailbox_command = nod32mda -d “$USER“ “$EXTENSION“’

Keep in mind that the command line switches used in ’mailbox_command’ after the nod32mda component must 
stay the same as in the original configuration file, otherwise the configuration may not work properly. The reason is that 
the switches depend on the version of original MDA used by the Postfix.

With the above modifications you have ensured that all the e-mail messages originally sent to MDA will be catched 
by nod32mda module first. Still there remains to provide that all messages processed by nod32mda will be sent to the 
original MDA for further delivery. To do so, just modify parameter ‘mda_path‘ within section [mda] of main NOD32 
configuration file. In case of ’maildrop’ MDA the parameter ‘mda_path‘ will be as follows:

mda_path = “/usr/bin/maildrop“

For reread of newly created NOD32 configuration, enter the following command:

/etc/init.d/nod32d reload

To accomplish the whole procedure, one has to restart the MTA Postfix.
Note that NOD32LMS/NOD32BMS provides you with the option to define NOD32 scanning engine parameters 

individually for recipient users (resp. recipient domains). In this case it is necessary to pass the information about the 

chapter 4 / Integration with E-mail Messaging System



16

recipient user to nod32mda module using its command line interface. Note that in case you would like to pass any 
command line parameter to the whole nod32mda agent it is necessary to prepend the parameter by sentence ‚--‘, 
otherwise the parameter will  be assumed to be passed to original MDA specified by the ‘mda_path‘ parameter. Thus 
for instance to pass command line option --user to nod32mda agent the ‘mailbox_command‘ option has to be defined 
in the following way.

postconf -e ’mailbox_command = nod32mda -d “$USER“ “$EXTENSION“ \ 
-- --user “$USER“’

With this setting a special section [user], if defined in NOD32 configuration file, will be used by main NOD32 daemon 
for scanning.

4.1.2.3. Setting NOD32MDA in Qmail MTA

The delivery options in the Qmail program are configured via the command line parameters at the time of program 
execution or by using short scripts where the appropriate command line statements are stored. In the following text we 
assume that the Qmail is installed in a ’/var/qmail’ directory and there is a QMail’s starting script ’rc’ within this directory 
that is always executed at the start-up of Qmail by running the standard statement 

qmailctl start

In a simplest case the script ‘/var/qmail/rc‘ is of the following content:
#!/bin/sh

exec env - PATH=“/var/qmail/bin:$PATH“ \ 
qmail-start ./Maildir/ splogger qmail

Note the first qmail-start argument instructing qmail where to deliver e-mail messages to. This time it is a special 
directory structure located in ’./Maildir/’ within the local user home directory. However, generally there are also other 
possible variants of the argument. For instance - ./Mailbox - that instructs qmail to deliver e-mail messages to the 
MAILBOX file located at the local user home directory or - ‘|preline procmail‘ - to use the ‘procmail‘ MDA as a local 
delivery agent, etc. See dot-qmail(5) manual page to get detailed information on this topic.

In order to instruct qmail to use nod32mda module in the message delivery process, you have to prepend the first 
command line argument of qmail-start with the absolute path of nod32mda module, i.e. the starting script ‘var/qmail/
rc‘ will contain:
#!/bin/sh

exec env - PATH=“/var/qmail/bin:$PATH“ \ 
qmail-start ’|/usr/bin/nod32mda ’./Maildir/ splogger qmail

Note that the nod32mda module absolute path is different in the RedHat Ready and/or Novell (SuSE) Ready variation 
of NOD32 for Linux Mail Server, so the starting script ‘var/qmail/rc‘ in that case will appear to be of the form
#!/bin/sh

exec env - PATH=“/var/qmail/bin:$PATH“ \ 
qmail-start ’|/opt/eset/nod32/bin/nod32mda ’./Maildir/ splogger qmail

Note that there is space before the second character ‚ and no space after it. Keep also in mind that the argument - 
./Maildir/ - is used this time only as an example and in your case you must prepend argument used in your original ‚/
var/qmail/rc‘ script.

With above modifications you have ensured that all the e-mail messages originally sent to MDA will be catched by 

NOD32 for Linux/BSD Mail Server



17

nod32mda module first. Still there remains to provide that all messages processed by nod32mda will be passed back to 
QMail’s program for further message delivery. To do so, just modify parameter ‚mda_path‘ within section [mda] of main 
NOD32 configuration file in the following way:

mda_path = “/var/qmail/bin/qmail-nod32mda“

Create the script ’/var/qmail/bin/qmail-nod32mda’ with the following content and run command ‚chmod a+x‘ on 
it:

#!/bin/sh 
exec qmail-local -- “$USER“ “$HOME“ “$LOCAL“ ““ “$EXT“ “$HOST“ “$SENDER“ “$1“

Using this script the nod32mda will automatically (based on present environment variables) use QMail’s recognized 
exit codes related with the ’temporary error status’ and also ’infected e-mail message status’ (see also qmail-command(8) 
manual page to get information on exit codes of Qmail).

To reread the newly created NOD32 configuration, enter the following command:

/etc/init.d/nod32d reload

To accomplish the whole procedure, one has to restart the MTA Qmail.
Note that NOD32LMS/NOD32BMS provides you with the possibility to define NOD32 scanning engine parameters 

individually for recipient users (resp. recipient domains). In this case it is necessary to pass the information about the 
recipient user to nod32mda module using its command line interface.Note that in case you would like to pass any 
command line parameter to the whole nod32mda agent it is necessary to prepend the parameter by sentence ’--’, 
otherwise the parameter will be assumed to be passed to original MDA specified by the ’mda_path’ parameter. Thus 
for instance to pass command line option --user to nod32mda agent the ’/var/qmail/rc’ script shall be of the following 
content,
#!/bin/sh

exec env - PATH=“/var/qmail/bin:$PATH“ \ 
qmail-start ’|/usr/bin/nod32mda ’./Maildir/’ \ 
-- --user “$USER“’ splogger qmail

respectively in case you use RedHat Ready and/or Novell (SuSE) Ready variation of NOD32 for Linux Mail Server the 
’/var/qmail/rc’ script shall be slightly different.

#!/bin/sh

exec env - PATH=“/var/qmail/bin:$PATH“ \ 
qmail-start ’|/opt/eset/nod32/bin/nod32mda ’./Maildir/’ \ 
-- --user “$USER“’ splogger qmail

4.1.2.4. Setting NOD32MDA in MTA Exim version 3

Let’s look inside the exim configuration file ’/etc/exim/exim.conf’ (resp. in older versions ’/etc/exim.conf’) to 
become familiarwith its content. It is typically compound from the so-called TRANSPORTERS CONFIGURATION section 
and DIRECTORS CONFIGURATION section. In order to configure exim to use NOD32LMS/NOD32BMS you have to define 
special DIRECTORS CONFIGURATION entry in a following way:

# DIRECTORS CONFIGURATION 
nod32_director: 
driver = smartuser 

chapter 4 / Integration with E-mail Messaging System



18

condition = “${if eq {$received_protocol}{virus-scanned} {0}{1}}“ 
transport = nod32_transport 
verify = false

Note that above entry has to be placed as a first of the DIRECTORS CONFIGURATION section. You also have to define 
an appropriate TRANSPORTERS CONFIGURATION entry responsible for e-mail messages delivery to nod32mda agent. 
Content of the entry is as follows:

# TRANSPORTS CONFIGURATION 
nod32_transport: 
driver = pipe 
command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain 
user = mail 
group = mail

Note that in RedHat Ready and/or Novell (SuSE) Ready variation of NOD32 for Linux Mail Server the absolute path to 
nod32mda module is different, so the definition of TRANSPORTS CONFIGURATION entry in this case is as follows:

# TRANSPORTS CONFIGURATION 
nod32_transport: 
driver = pipe 
command = /opt/eset/nod32/bin/nod32mda -oMr virus-scanned $local_part@$domain 
user = mail 
group = mail

Be sure that the ’user’ (usually ’mail’) used in the above settings is listed in a ’trusted_users’ list for this parameter. 
Also be sure that the option ’qualify_domain’ is undefined or set to your fully qualified domain name.

With the above settings you have ensured that all the e-mail messages originally sent to local domain user will 
be primarily catched by nod32mda module. Yet there remains to provide that all messages processed by nod32mda 
will be sent to the appropriate mailbox. To do so, just modify parameter ‘mda_path‘ within section [mda] of main 
NOD32 configuration file. In case the absolute path to the exim is ‘/usr/sbin/exim‘ the parameter ‘mda_path‘ will be 
as follows:

mda_path = “/usr/sbin/exim“

To reread the newly created NOD32 configuration, enter the following command:

/etc/init.d/nod32d reload

To accomplish the whole procedure, one has to restart the MTA Exim.
Note that NOD32LMS/NOD32BMS provides you with the option to define NOD32 scanning engine parameters 

individually for recipient users (resp. recipient domains). In this case it is necessary to pass the information about 
the recipient user to nod32mda module using its command line interface. Note that in case you would like to pass 
any command line parameter to the whole nod32mda agent it is necessary to prepend the parameter by sentence ‘-
-‘, otherwise the parameter will be assumed to be passed to ‘exim‘ specified by the ‘mda_path‘ parameter. Thus for 
instance to pass command line option --user to nod32mda  agent, the parameter ‘command‘ defined in TRANSPORTS 
CONFIGURATION entry must by as follows:

command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain \ 
-- --user $local_part

resp. in case of RedHat Ready and Novell (SuSE) Ready variation of NOD32 for Linux Mail Server used, the ’command’ 

NOD32 for Linux/BSD Mail Server



19

parameter has to be defined as follows:

command = /opt/eset/nod32/bin/nod32mda -oMr virus-scanned $local_part@$domain \ 
-- --user $local_part

4.1.2.5. Setting NOD32MDA in MTA Exim version 4

Let’s look inside the exim configuration file ’/etc/exim4/exim4.conf’ to become familiar with its content. It is 
typically compound from TRANSPORTS CONFIGURATION section and ROUTERS CONFIGURATION section. Usually there is 
a ROUTERS CONFIGURATION entry ’localuser’ responsible for e-mail messages local delivery. In order to configure exim to 
use NOD32LMS/NOD32BMS you have to define special ROUTERS CONFIGURATION entry in a following way:

# ROUTER CONFIGURATION 
nod32_router: 
driver = accept 
domains = +local_domains 
condition = “${if eq {$received_protocol}{virus-scanned} {0}{1}}“ 
transport = nod32_transport 
verify = false

Note that above entry has to be placed as a first in the ROUTERS CONFIGURATION section. You have also define 
an appropriate TRANSPORTERS CONFIGURATION entry responsible for e-mail messages delivery to nod32mda agent. 
Content of the entry is as follows:

# TRANSPORTS CONFIGURATION 
nod32_transport: 
driver = pipe 
command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain 
user = mailnull 
group = mail

Note that in RedHat Ready and/or Novell (SuSE) Ready variation of NOD32 for Linux Mail Server the absolute path to 
nod32mda module is different, so the definition of TRANSPORTS CONFIGURATION entry in this case is as follows:

# TRANSPORTS CONFIGURATION 
nod32_transport: 
driver = pipe 
command = /opt/eset/nod32/bin/nod32mda -oMr virus-scanned $local_part@$domain 
user = mailnull 
group = mail

Be sure that the ’user’ (usually ’mailnull’) is the value of ’exim_user’ or pick a name from the list ’trusted_users’ for 
this parameter. Also be sure that the option ’qualify_domain’ is undefined or set to your fully qualified domain name.

With the above settings you have ensured that all the e-mail messages originally sent to local domain user will 
be primarily catched by nod32mda module. Yet there remains to provide that all messages processed by nod32mda 
will be sent to the appropriate mailbox. To do so just modify parameter ‚mda_path‘ within section [mda] of main 
NOD32 configuration file. In case the absolute path to the exim is ‘/usr/sbin/exim‘ the parameter ‘mda_path‘ will be 
as follows:

mda_path = “/usr/sbin/exim“

To reread the newly created NOD32 configuration, enter the following command:

chapter 4 / Integration with E-mail Messaging System



20

/etc/init.d/nod32d reload

To accomplish the whole procedure, one has to restart the MTA Exim.
Note that NOD32LMS/NOD32BMS provides you with the option to define NOD32 scanning engine parameters 

individually for recipient users (resp. recipient domains). In this case it is necessary to pass the information about 
the recipient user to nod32mda module using its command line interface. Note that in case you would like to pass 
any command line parameter to the whole nod32mda agent it is necessary to prepend the parameter by sentence ‚-
-‘, otherwise the parameter will be assumed to be passed to ‘exim‘ specified by the ‘mda_path‘ parameter. Thus for 
instance to pass command line option --user to nod32mda  agent, the parameter ‘command‘ defined in TRANSPORTS 
CONFIGURATION entry must by as follows:

command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain \ 
-- --user $local_part

resp. in case of RedHat Ready and Novell (SuSE) Ready variation of NOD32 for Linux Mail Server used, the ’command’ 
parameter has to be defined as follows:

command = /opt/eset/nod32/bin/nod32mda -oMr virus-scanned $local_part@$domain \ 
-- --user $local_part

4.2. Scanning of outbound e-mail messages

Scanning of the outbound e-mail messages is performed during transfer of e-mail messages between the local MUA 
and the MTA. A more detailed scheme of the process is shown in the figure 4-3.

The most important part of scanning the outbound messages is done by the nod32smtp module.
This filter is a resident program (daemon) that performs in general three functions:
•  receives data via INET socket,
• extracts e-mail/s and feeds nod32d (scanning daemon) to scan it,
•  forwards the e-mail to another port or computer.
The operation principle of outbound e-mail messages scanning is based on the following idea. We configure a 

nod32smtp daemon to listen to communication incoming to port 2525 of the email server computer and forward the 
scanned communication to port 25 of the same computer where, typically, the MTA daemon listens to. To configure 
nod32smtp to intercept outbound email messages the following parameters must be specified in section [smtp] of the 
main NOD32 configuration file.

agent_enabled = yes 
listen_addr = “localhost“ 
listen_port = 2525 
server_addr = “localhost“ 
server_port = 25

To reread the newly created NOD32 configuration, 
enter the following command.

/etc/init.d/nod32d reload

So far this is just half of the job. The second part that 
has to be done is automatic redirection of all the packets 
arriving on port 25 of the server computer to port 2525. In 

NOD32D

NOD32SMPT

INTERNET

FILEMTA

TCP port 2525TCP port 25

Local Network 192.168.1.0/24

Figure 4-3. The scheme of the scanning of outbound e-mail 
messages by using nod32smtp module.

NOD32 for Linux/BSD Mail Server



21

case you use ipchains (resp. iptables) tool for network filtering an appropriate rules will be as follows.
Kernel 2.2.X:

ipchains -I INPUT -p tcp -s 192.168.1.0/24 -d 0.0.0.0/0 25 \ 
-j REDIRECT 2525

Kernel2.4.X:

iptables -I PREROUTING -t nat -p tcp -s 192.168.1.0/24 --dport 25 \ 
-j REDIRECT --to-ports 2525

Now all the communication arrives to the nod32smtp that can be checked in the module logging output. Note 
that the port 2525 with this setting provides an open relay as nod32smtp accepts all the packets that arrive on port 
2525 (including packets from outside the local network). The daemon nod32smtp forwards this traffic to port 25 that 
is interpreted by MTA as a local communication on the so called loop-back interface and therefore will not be rejected 
by MTA rules. You can solve this problem by ensuring that all communication with port 2525 will be disabled except the 
local network communication. Use following ipchains (resp. iptabels) rules to do so.

Kernel 2.2.X:

ipchains -I INPUT -p tcp -s ! 192.168.1.0/24 -d 0.0.0.0/0 2525 \ 
-j REJECT

Kernel 2.4.X:

iptables -I INPUT -p tcp -s ! 192.168.1.0/24 --dport 2525 \ 
-j DROP

Note that the BSD OS uses ipfw tools for network filtering. Thus in case of BSD OS an appropriate rules for 
communication rerouting from the LAN arriving on port 25 to port 2525 will be as follows.

natd -interface xl0 -redirect_port tcp 192.168.1.10:2525 25

where xl0 is the network interface of the server computer with IP address 192.168.1.10. To add the diverting rule 
into the ipfw firewall you have to enter following rule.

/sbin/ipfw add divert natd all from any to any via xl0

Note that in order to have ipfw firewall and natd daemon working properly, the BSD OS kernel has to be compiled 
with the options IPFIREWALL and IPDIVERT. Moreover the following options has to be written into ’/etc/rc.conf’.

gateway_enable=“YES“ 
firewall_enable=“YES“ 
firewall_type=“OPEN“

Now all the communication arrives to the nod32smtp that can be checked in the module logging output. Note 
that the port 2525 with this setting provides an open relay as nod32smtp accepts all the packets that arrive on port 
2525 (including packets from outside the local network). The daemon nod32smtp forwards this traffic to port 25 that 
is interpreted by MTA as a local communication on the so called loop-back interface and therefore will not be rejected 
by MTA rules. You can solve this problem by ensuring that all communication with port 2525 will be disabled except the 
local network communication. Use following ipfw rule to do so.

ipfw add deny tcp from not 192.168.1.0/24 to 192.168.1.10 2525 via xl0

chapter 4 / Integration with E-mail Messaging System



22

4.3. Content Filtering in MTA

Content filtering method is in the present a well known method used to screen and/or exclude certain defined 
information from the Internet or its part. Concerning an e-mail server system the best place to implement content 
filtering method is the MTA agent as an e-mail communication traffic nod. The advantage of such an implementation 
is that it allows one to scan e-mails inbound as well as outbound in the same implementation algorithm. On the other 
hand the content filtering method is MTA dependent. The ESET comes with four content filters built for most common 
MTA, i.e. MTA Sendmail, Postfix, Exim and QMail. These are reviewed in the following sections.

4.3.1. Content filtering in MTA Postfix

The MTA Postfix content filter requirements are fulfilled by nod32smtp daemon. To configure nod32smtp for this 
purpose the following parameters must be specified in section [smtp] of the main NOD32 configuration file.

agent_enabled = yes 
listen_addr = “localhost“ 
listen_port = 2526 
server_addr = “localhost“ 
server_port = 2525

After reread of the newly created NOD32 configuration using command:

/etc/init.d/nod32d reload

the nod32smtp module will listen on port 2526 and will forward all communication from this port to the local port 
2525.

In the next step, add the following specification into the ’/etc/postfix/master.cf’ configuration file.

localhost:2525 inet n - n - - smtpd 
-o content_filter= 
-o myhostname=nod32.yourdomain.com

Note that the ’yourdomain.com’ part of the 
’myhostname’ parameter must be in your case replaced 
by an appropriate server’s domain specification. Note also 
that the MTA Postfix does not like when the ’yourdomain.
com’ part of ’myshostname’ parameter above matches 
domain name specified in the parameter ’myhostname’ 
of the ’/etc/postfix/main.cf’ configuration file. The trick 
to overcome this problem relies on using IP address in 
’myhostname’ parameter of ’/etc/postfix/main.cf’ while 
DNS name of the domain name used in ’/etc/postfix/
master.cf’.

Finally, add ’content_filter’ specification into ’/
etc/postfix/main.cf’ configuration file by entering the 
following command.

postconf -e “content_filter = smtp:localhost:2526“

Entire entire process described above is illustrated in figure 4-4.

TCP port 2525

POSTFIX

CLEANUP

SMTP

SMTPD LOCAL

QUEUE

PICKUP

TCP port 2526

SMTPD SMTP

NOD32SMPT

Figure 4-4. Bidirectional scanning scheme of an nod32smtp 
module working as a content filter.

NOD32 for Linux/BSD Mail Server



23

4.3.2. Content filtering in MTA Sendmail

The nod32smfi module is a third-party program with the purpose to serve as a content filter for MTA Sendmail. 
Using Sendmail’s Milter interface the nod32smfi accesses all e-mail messages being processed by MTA Sendmail. In 
order to enable filtering, enter the following lines into the [smfi] section of main NOD32 configuration file.

agent_enabled = yes

smfi_sock_path = “/var/run/nod32smfi.sock“

In the next step, modify the ’/etc/mail/sendmail.cf’ file by entering the following specification into the section MAIL 
FILTER DEFINITIONS:

Xnod32smfi, S=local:/var/run/nod32smfi.sock, F=T, T=S:2m;R:2m;E:5m

With these settings the MTA Sendmail will communicate with the nod32smfi module via unix socket ’/var/run/
nod32smfi.sock’. Flag F=T will result in temporary fail connection if the filter is unavailable. Flag T=S:2m defines 
timeout 2 minutes for sending information from MTA to filter. Flag T=R:2m defines timeout 2 minutes for reading reply 
from the filter. Flag T=E:5m means overall timeout 5 minutes between sending end-of-message to filter and waiting 
for the final acknowledgment.

Note that in case the timeouts for the nod32smfi filter are set too small, the Sendmail can temporarily reject the 
message which will attempt to pass through at a later time. This will lead to the continuous rejection of one and the 
same message later. In order to avoid the problem, the timeouts have to be set properly. Thus one has to get into 
account ’confMAX_MESSAGE_SIZE’ parameter defined in a sendmail.mc file that will provide not accepting messages 
bigger than the appropriate parameter value (given in bytes). Taking into account this value and the maximum time 
for processing of this amount of data by MTA (this can be measured) one can evaluate the appropriate timeouts for 
nod32smfi filter.

Finally, uncomment and modify the following line in the ’/etc/mail/sendmail.cf’ file.

O InputMailFilters=nod32smfi

To reread the newly created NOD32 configuration, enter the following command.

/etc/init.d/nod32d reload

To  accomplish the whole procedure, one has to restart the MTA Sendmail.

4.3.3. Content filtering in MTA Exim 3

Let’s look inside the exim configuration file ’/etc/exim/exim.conf’ (resp. in older versions ’/etc/exim.conf’) to become 
familiar with its content. It is typically compound from the so called TRANSPORTS CONFIGURATION section, DIRECTORS 
CONFIGURATION section and ROUTERS CONFIGURATION section. In order to configure exim to use our anti-virus you have 
to define special DIRECTORS CONFIGURATION entry:

# DIRECTORS CONFIGURATION 
nod32_director: 
driver = smartuser

condition = “${if eq {$received_protocol}{virus-scanned} {0}{1}}“ 
transport = nod32_transport 
verify = false

chapter 4 / Integration with E-mail Messaging System



24

and place it as a first in the DIRECTORS CONFIGURATION section and you have to define special ROUTERS 
CONFIGURATION entry:

# ROUTERS CONFIGURATION 
nod32_router: 
driver = domainlist 
route_list = “* localhost byname“ 
condition = “${if eq {$received_protocol}{virus-scanned} {0}{1}}“ 
transport = nod32_transport 
verify = false

and place it as a first in the ROUTERS CONFIGURATION section. You have also define an appropriate TRANSPORTERS 
CONFIGURATION entry responsible for e-mail messages delivery to nod32mda agent. Content of the entry is as follows:

# TRANSPORTS CONFIGURATION 
nod32_transport: 
driver = pipe 
command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain 
user = mail 
group = mail

Note that in RedHat Ready and/or Novell (SuSE) Ready variation of this anti-virus product the absolute path to 
nod32mda module is different, so the definition of TRANSPORTS CONFIGURATION entry in this case is as follows:

# TRANSPORTS CONFIGURATION 
nod32_transport: 
driver = pipe 
command = /opt/eset/nod32/bin/nod32mda -oMr virus-scanned $local_part@$domain 
user = mail 
group = mail

Make  sure  that the ‘user‘ (usually ‘mail‘) used in the above settings is listed in a ‘trusted_users‘ list for this parameter. 
Also be sure that the option ‘qualify_domain‘ is undefined or set to your fully qualified domain name. 

With  the  above settings you have ensured that all the e-mail messages originally sent to local domain user will 
be primarily catched by nod32mda module. Yet there remains to provide that all messages processed by nod32mda 
will be sent to the appropriate mailbox. To do so just modify parameter ‘mda_path‘ within section [mda] of main 
NOD32 configuration file. In case the absolute path to the exim is ‘/usr/sbin/exim‘ the parameter ‘mda_path‘ will be 
as follows.

mda_path = “/usr/sbin/exim“

To reread the newly created NOD32 configuration, enter the following command.

/etc/init.d/nod32d reload

To accomplish the whole procedure, one has to resatrt the MTA Exim.
Note that our product provides you with the option to define NOD32 scanner parameters individually for recipient 

users (resp. recipient domains). In this case it is necessary to pass the information about the  recipient  user to nod32mda 
module using its command line interface. Note that in case you would like to pass any command line parameter to the 
whole nod32mda agent it is necessary to prepend the parameter by sentence ‘--‘, otherwise the parameter will be 
assumed to be passed to ‘exim‘ specified by the ‘mda_path‘ parameter. Thus for instance to pass command line option --

NOD32 for Linux/BSD Mail Server



25

user to nod32mda agent, the parameter ‘command‘ defined in TRANSPORTS CONFIGURATION entry must by as follows:

command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain \ 
-- --user $local_part

resp. in case of RedHat Ready and Novell (SuSE) Ready variation of this anti-virus product used, the ’command’ 
parameter has to be defined as follows:

command = /opt/eset/nod32/bin/nod32mda -oMr virus-scanned $local_part@$domain \ 
-- --user $local_part

4.3.4. Content filtering in MTA Exim 4

Let’s look inside the exim configuration file ’/etc/exim4/exim4.conf’ to become familiar with its content. It is typically 
compound from TRANSPORTS CONFIGURATION section and ROUTERS CONFIGURATION section. In order to configure exim 
to use our anti-virus as a content filter you have to define special ROUTERS CONFIGURATION entry in a following way:

# ROUTER CONFIGURATION 
nod32_router: 
driver = accept 
condition = “${if eq {$received_protocol}{virus-scanned} {0}{1}}“ 
transport = nod32_transport 
verify = false

Note that above entry has to be placed as a first in the ROUTERS CONFIGURATION section. You have also define 
an appropriate TRANSPORTERS CONFIGURATION entry responsible for e-mail messages delivery to nod32mda agent. 
Content of the entry is as follows:

# TRANSPORTS CONFIGURATION 
nod32_transport: 
driver = pipe 
command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain 
user = mailnull 
group = mail

Note that in RedHat Ready and/or Novell (SuSE) Ready variation of this anti-virus product the absolute path to 
nod32mda module is different, so the definition of TRANSPORTS CONFIGURATION entry in this case is as follows:

# TRANSPORTS CONFIGURATION 
nod32_transport: 
driver = pipe 
command = /opt/eset/nod32/bin/nod32mda -oMr virus-scanned $local_part@$domain 
user = mailnull 
group = mail

Make sure that the ‘user‘ (usually ‘mailnull‘) is the value of ’exim_user’ or pick a name fromthe list ’trusted_users’ for 
this parameter. Also be sure that the option ’qualify_domain’ is undefined or set to your fully qualified domain name.

With  the  above settings you have ensured that all the e-mail messages originally sent to local domain user will 
be primarily catched by nod32mda module. Still there remains to provide that all messages processed by nod32mda 
will be sent to the appropriate mailbox. To do so, just modify parameter ‘mda_path‘ within section [mda] of main 

chapter 4 / Integration with E-mail Messaging System



26

NOD32 configuration file. In case the absolute path to the exim is ‘/usr/sbin/exim‘ the parameter ‘mda_path‘ will be 
as follows:

mda_path = “/usr/sbin/exim“

To reread the newly created NOD32 configuration, enter the following command:

/etc/init.d/nod32d reload

To accomplish the whole procedure, one has to restart the MTA Exim.
Note that our product provides you with the option to define NOD32 scanner parameters individually for recipient 

users (resp. recipient domains). In this case it is necessary to pass the information about the  recipient  user to nod32mda 
module using its command line interface. Note that in case you would like to pass any command line parameter to 
the whole nod32mda agent it is necessary to prepend the parameter by sentence ‘--‘, otherwise the parameter will 
be assumed to be passed to ‚exim‘ specified by the ‘mda_path‘ parameter. Thus, for instance to pass command line 
option --user to nod32mda agent, the parameter ‘command‘ defined in TRANSPORTS CONFIGURATION entry must by 
as follows:

command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain \ 
-- --user $local_part

resp. in case of RedHat Ready and Novell (SuSE) Ready variation of this anti-virus product used, the ’command’ 
parameter has to be defined as follows:

command = /opt/eset/nod32/bin/nod32mda -oMr virus-scanned $local_part@$domain \ 
-- --user $local_part

4.3.5. Content filtering in MTA Qmail

Nod32pipe can serve as a content-filter for Qmail. However, you need to download and compile the qmail-qfilter 
program, version 2.0 or newer. Following instructions do not require you to use the QMAILQUEUE patch. We assume your 
qmail is installed in ’/var/qmail’. First create the script ’/var/qmail/bin/qmail-nod32pipe’ with the following content 
and run chmod a+x on it:

#!/bin/sh 
export QQF_QMAILQUEUE=/var/qmail/bin/qmail-queue.nod32save 
exec qmail-qfilter /usr/bin/nod32pipe

Note that in RedHat Ready and/or Novell (SuSE) Ready variation of this anti-virus product the absolute path of 
nod32pipe module is different, so in this case an appropriate script content will be as follows:

#!/bin/sh 
export QQF_QMAILQUEUE=/var/qmail/bin/qmail-queue.nod32save 
exec qmail-qfilter /opt/eset/nod32/bin/nod32pipe

Next, enter the following commands:

mv /var/qmail/bin/qmail-queue /var/qmail/bin/qmail-queue.nod32save 
ln -s /var/qmail/bin/qmail-nod32pipe /var/qmail/bin/qmail-queue

In this configuration, in case of infection or temporary error, nod32pipe will automatically (based on present 
environment variables) use QMail’s recognized exit codes (31, 71 or 99, see qmail-queue(8) and qmail-qfilter(1) manual 
pages for details). It will also ask nod32d to use the user specific configuration based on the first envelope recipient.

NOD32 for Linux/BSD Mail Server



27

To accomplish the whole procedure, one has to restart the MTA Qmail.

4.4. Alternative methods of content filtering

Although mechanisms described in previous sections are concerned to be the basic mechanisms of the e-mail 
messages scanning, there exists yet other possibilities that are all described in this section.

4.4.1. Scanning e-mail messages using AMaViS

AMaViS - A Mail Virus Scanner is a tool that interfaces your MTA and several anti-virus scanners. It supports Sendmail, 
QMail, Postfix, Exim and comes in three branches:
amavis

for low/medium mail volume
amavisd

for higher mail volume, daemonized version of amavis
amavisd-new

for higher mail volume, Anti-Spam, ISP features, ...
Amavis cooperates with the anti-virus by using its command line interface nod32cli (see the nod32cli(1) manual 

page for details). Yet before we go into detailed explanation of the Amavis configurations, we would like to discuss the 
impact of the method on the anti-virus software functionality.

First, note that Amavis does not allow modification of the body of scanned e-mail messages directly by anti-virus 
software. Particularly, no infected e-mail message processed and delivered to the final recipient will be cleaned directly 
by anti-virus software. Second consequence is that no NOD32 footnote will be written into the e-mail body. Another 
feature of the described method is that the modification of e-mail header is indirect from the point of view of the 
antivirus software. Particularly, status dependent, header modification directly by the anti-virus is disabled. Taking into 
account the above statements we recommend the use of Amavis configuration (described in the next sections) only in 
case the above discussed features of the product are not requested by the user.

4.4.1.1. amavis

Configuration of Amavis is performed during the process of Amavis installation. For installation, first unpack the 
source amavis-0.x.y.tgz and overwrite the file amavis/av/nod32cli with this contents:

# 
# ESET Software NOD32 Command Line Interface, Version 2.52 
# 
if ($nod32cli) { 
 do_log(2,“Using $nod32cli“); 
 chop($output = ‘$nod32cli --subdir $TEMPDIR/parts‘); 
 $errval = retcode($?); 
 do_log(2,$output); 
 if ($errval == 0) { # no errors, no viruses found 
  $scanner_errors = 0; 
 } elsif ($errval == 1 || $errval == 2) { 
  # no errors, viruses discovered 
  $scanner_errors = 0; 

chapter 4 / Integration with E-mail Messaging System



28

  @virusname = ($output =~ /virus=“([^“]+)“/g); 
  do_virus(); 
 } else { 
  do_log(0,“Virus scanner failure: $nod32cli (error code: $errval)“); 
 } 
}

Note that the above modification provides accepting of the message only in case it was originally clean. The rest 
of non-error states returned by the anti-virus will be treated in a way that the message will be dropped. The messages 
resolved by the anti-virus as cleaned/deleted will be dropped as well as nod32cli module has no exclusive access to 
the message and therefore is not able to guarantee its cleaning/deletion. Above modification also treats the „error in 
archive“ status (3) of nod32cli in a way that the message is rejected. Particularly, messages with the password protected 
attachment are treated in this way as it is not possible to mark the messages with the „not scanned“ status. In order to 
change these default settings user is free to modify the above text, however, it is not recommended unless he is sure 
about the consequences. Please, read the discussion at the end of foreword to this section to get more information on 
the product functionality when configured with Amavis.

Also, if you are running the RedHat Ready and/or Novell (SuSE) Ready variation of this product, you have to update 
your PATH environment variable by issuing the following command:

export PATH=“$PATH:/opt/eset/nod32/bin“

For successful installation you may need to install additional software  like arc, unarj, unrar, zoo. You also have to 
make a symlink in /usr/bin from uncompress to gzip and create the user amavis in group amavis with home dir /var/
amavis. Rename (at least for the amavis configuration) the file ‘/usr/sbin/nod32‘ to ‘/usr/sbin/nod32.bak‘. Now continue 
with the usual installation process (./configure, make, make install) and follow the rules README.mta according your 
mail server.

4.4.1.2. amavisd

Configuration of Amavisd is performed during the process of Amavisd installation. Unpack the source amavisd-
0.x.tgz and follow the rules for amavis described in previous section of this guide.

Note: After ’make install’ you may need to move ‘/usr/etc/amavisd.conf‘ to ‘/etc‘ and do a ’make install’ again. Don’t 
forget to run amavisd as user amavis after finishing the installation.

4.4.1.3. amavisd-new

In order to install the product with Amavisd-new, unpack and install the source amavisdnew- 2.x.y.tgz in your 
installation directory. Now to configure the product with newly installed Amavisd-new, delete the clause for ’ESET 
Software NOD32’ and replace the clause for ’ESET Software NOD32 - Client/Server Version’ in file ’amavisd.conf’ with 
the following one:

### http://www.eset.com/ 
[’ESET Software NOD32 Command Line Interface v 2.52’, 
’/usr/bin/nod32cli’, ’--subdir {}’, 
[0], [1,2], qr/virus=“([^“]+)“/ ],

Note that in RedHat Ready and Novell (SuSE) Ready variation of this product an appropriate script will look like 
this:

NOD32 for Linux/BSD Mail Server



29

### http://www.eset.com/ 
[’ESET Software NOD32 Command Line Interface v 2.52’, 
’/opt/eset/nod32/bin/nod32cli’, ’--subdir {}’, 
[0], [1,2], qr/virus=“([^“]+)“/ ],

Please, note the NOD32 scanning status values written within square brackets of the above setting. They are set to 
follow the same performance of Amavis cooperation as defined by default in the section discussing Amavis configuration. 
User is free to modify the above text, however, it is not recommended unless he is sure about the consequences. Please, 
read end of the foreword to this section and end of the section discussing Amavis configuration in order to get more 
information.

You may need to install additional Perl modules Archive-Tar, Archive-Zip, BerkeleyDB, Compress-Zlib, Convert-TNEF, 
Convert-UUlib, IO-stringy, MailTools, MIME-Base64, MIME-tools, Net-Server and Unix-Syslog from www.cpan.org/
modules. The procedure is by each as follows: perl Makefile.PL; make; make install.

After configuration, please follow the recommendation for configuring Amavisd-new in README.mta located in 
Amavisd-new directory according your mail server.

chapter 4 / Integration with E-mail Messaging System



NOD32 for Linux/BSD Mail Server



Chapter 5:

Important NOD32LMS/
NOD32BMS Mechanisms

5  


Im
po

rt
an

t N
OD

32
LM

S/
NO

D3
2B

M
S M

ec
ha

ni
sm

s



32

5.1. User Specific Configuration

User Specific Configuration mechanism is implemented in the product in order to provide user with enhanced 
configuration functionality. It allows to define NOD32 anti-virus scanner parameters selectively for client/server 
identification.

Regarding the NOD32LMS/NOD32BMS the NOD32 anti-virus scanner parameters can be defined individually for first 
recipient and/or sender of the e-mail messages processed.

Please note that the detailed description of this functionality can be found in nod32.cfg(5) manual page and 
manual pages referenced there. Thus in this section we will only provide short example of user specific configuration 
definition.

Let’s say we use nod32smtp module for the scanning purpose. This module is subjected to the [smtp] configuration 
section found within main NOD32 configuration file. The example of the section can be as follows:

[smtp] 
agent_enabled = yes 
listen_addr = “localhost“ 
listen_port = 2526 
server_addr = “localhost“ 
server_port = 2525 
action_on_processed = accept

In order to provide individual parameters setting one has to define ‚user_config‘ parameter with the path to the 
special configuration file where the individual setting will be stored. In the next example we create reference to the 
special configuration file ’nod32smtp_spec.cfg’ located within default configuration file directory.

[smtp] 
agent_enabled = yes 
listen_addr = “localhost“ 
listen_port = 2526 
server_addr = “localhost“ 
server_port = 2525 
action_on_processed = accept 
user_config = “nod32smtp_spec.cfg“

Note that the parameter ’user_config’ accepts also absolute path to the specific configuration file.
Once special configuration file referenced from within [smtp] section we have to create this file and provide the file 

with an appropriate individual settings.
In the next example we create individual parameter setting of parameter ’action_on_processed’ for recipient 

rcptuser@rcptdomain.com and for sender sndruser@sndrdomain.com.

[rcptuser@rcptdomain.com|sndruser@sndrdomain.com] 
action_on_processed = reject

Note that the section header name of the special section contains identification of the recipient and sender for 
which we have created the individual setting. The section body then contains individual parameters specified for this 
identification. Thus with this special configuration all e-mails will be processed, i.e. scanned for infiltrations, with 
exception of the e-mails sent from sndruser@sndrdomain.comto rcptuser@rcptdomain.comthatwill be rejected without 
scanning. Note that this also a good example of how to create black-list.

NOD32 for Linux/BSD Mail Server



33

5.2. Handle Object Policy

The Handle Object Policy (see figure 5-1) is a mechanism that provides handling of the scanned objects depending 
on their scanning status. The mechanism is based on so-called action configuration options (’action_on_processed’, 
’action_on_infected’, ‚action_on_uncleanable‘, ‚action_on_notscanned‘) combined with Anti-Virus enabling 
configuration option (‚av_enabled‘). To get detailed information on these configuration options, please refer to the 
nod32.cfg(5) manual page.

Every object processed by NOD32LMS/NOD32BMS is at first handled with respect to the setting of the configuration 
option ’action_on_processed’. Once this parameter is set to ’accept’, the object is handled according to the setting of 
configuration option ’av_enabled’. Note that this parameter is of paramount importance if combined with so-called 
User Specific Configuration mechanism. In this  case various types of black-lists and white-lists can be configured.

Once ’av_enabled’ is enabled the object processed is scanned for virus infiltrations and set of action configuration 
options ’action_on_infected’, ’action_on_uncleanable’ and ’action_on_notscanned’ is taken into account to evaluate 
further handling of the object. If action ’accept’ has been taken as a result of the three above action options or ’av_
enabled’ is disabled the object is accepted for further delivery. In case any of action configuration options caused other 
than ‚accept‘ value, the object is blocked and will be handled according to the particular action taken.

5.3. Black-list and white-list

In this section we describe the black-list and/or white-list creation using the combination of already discussed 
NOD32LS/NOD32BS configuration mechanisms. In particular the black-list or white-list can be created using the Handle 
Object Policy features and User Specific Configuration mechanism. Thus the black-list or white-list can be created for 
recipients and/or senders of e-mail messages scanned by NOD32LS/NOD32BS.

In the next example we demonstrate the black-list and also white-list creation for the nod32smtp module as a 
content filter of MTA Postfix. The original configuration section related to the module is as follows,

agent_enabled = yes 
listen_addr = “localhost“ 
listen_port = 2526 

chapter 5 / Important NOD32LMS/NOD32BMS Mechanisms

Figure 5-1. Scheme of Handle Object Policy mechanism.

accept defer, discard, reject

action_on_processed

object not accepted

NO YES

av_enabled

accept defer, discard, reject

action_on_infected 
action_on_uncleanable 
action_on_notscanned

object not accepted

object accepted



34

server_addr = “localhost“ 
server_port = 2525

In the following we provide the [smtp] section with the reference to special configuration file ’nod32smtp_spec.cfg’ 
where the black-list or white-list will be defined.

[smtp] 
agent_enabled = yes 
listen_addr = “localhost“ 
listen_port = 2526 
server_addr = “localhost“ 
server_port = 2525 
user_config = “nod32smtp_spec.cfg“

Now it is necessary to create the referenced file within NOD32 configuration directory and provide it with the 
appropriate content related with the black-list or white-list definitions.

In order to create black-list for sender’s e-mail addresses ’sndrname1@sndrdomain1.com’, ’sndrname2@
sndrdomain2.com’, we have to create the following group section within the referenced special configuration file:

[black-list] 
action_on_processed = reject

and we have to create individual sections for sender’s e-mail addresses ’sndrname1@sndrdomain1.com’, 
’sndrname2@sndrdomain2.com’, that will be a member of the ’black-list’ group.

[|sndrname1@sndrdomain1.com] 
parent_id = “black-list“

[|sndrname2@sndrdomain2.com] 
parent_id = “black-list“

With the setting above all e-mails coming from the address ’sndrname1@sndrdomain1.com’, resp. from the address 
’sndrname2@sndrdomain2.com’ will be rejected.

On the other hand, if we want to create the white-list for recipient’s addresses ’rcptname1@rcptdomain1.
com’, ’rcptname2@rcptdomain2.com’, we have to create the following group section within the referenced special 
configuration file:

[white-list] 
action_on_processed = accept 
av_enabled = no 
as_enabled = no

and we have to create individual sections for recipient’s e-mail addresses ’rcptname1@rcptdomain1.com’, 
’rcptname2@rcptdomain2.com’, that will be a member of the ’white-list’ group.

[rcptname1@rcptdomain1.com] 
parent_id = “white-list“

[rcptname2@rcptdomain2.com] 
parent_id = “white-list“

Now, all e-mails addressed to recipients ’rcptname1@rcptdomain1.com’, ’rcptname2@rcptdomain2.com’ will be 

NOD32 for Linux/BSD Mail Server



35

accepted without scanning.
Please, note the character ’|’ placed in front of the header name of the special section in case of sender address and 

not placed there in case of recipient address. To get description of the special header name syntax, please refer to the 
appropriate NOD32 agent module manual page (in this case it is nod32smtp(1)).

5.4. Samples Submission System

Sample submission system is functionality that provides catching of the infected objects found by advanced 
heuristics method and delivering these objects to the sample submission system server. All virus samples catched by 
the sample submission system will be processed by the team of NOD32 virus laboratory department and consequently 
added into the NOD32 virus database, if necessary.

NOTE: ACCORDING TO OUR LICENSE AGREEMENT, BY ENABLING SAMPLE SUBMISSION SYSTEM YOU ARE AGREEING 
TO ALLOW THE COMPUTER AND/OR PLATFORM ON WHICH THE NOD32D IS INSTALLED TO COLLECT DATA (WHICH MAY 
INCLUDE PERSONAL INFORMATION ABOUT YOU AND/OR THE USER OF THE COMPUTER) AND SAMPLES OF NEWLY 
DETECTED VIRUSES OR OTHER THREATS AND SEND THEM TO OUR VIRUS LAB. THIS FEATURE IS TURNED OFF BY DEFAULT.
WEWILL ONLY USE THIS INFORMATION AND DATA TO STUDY THE THREAT AND WILL TAKE REASONABLE STEPS TO PRESERVE 
THE CONFIDENTIALITY OF SUCH INFORMATION.

In order to turn on this feature, enable both parameters ’samples_enabled’ and ’samples_send_enabled’ in global 
section of main configuration file.

ThreatSense.NET technology is able to send infected samples also via http proxy server with basic authentication. 
See the nod32d manual page for details.

chapter 5 / Important NOD32LMS/NOD32BMS Mechanisms



NOD32 for Linux/BSD Mail Server



Chapter 6:

NOD32 System Update and 
Maintenance

6  


NO
D3

2 
Sy

st
em

 U
pd

at
e 

an
d 

M
ai

nt
en

an
ce



38

6.1. Basic concept of NOD32 system update

In order to keep the anti-virus system effective, it is necessary to keep NOD32 virus signatures databse up to date. 
The nod32update utility has been developed for this purpose. To get details on the operation of the utility, read the 
nod32update(8) manual page. Basic concept of the NOD32 system update is composed from two parts.

6.1.1. NOD32 mirror creation

First,  the mirror of all relevant so-called NOD32 precompiled modules have to be created from the origin ESET 
server(s). In the product developed for Linux OS and BSD OS the precompiled NOD32 modules introduced above are 
downloaded by default in directory

/var/lib/nod32/mirror

The Linux RedHat Ready and Novell (SuSE) Ready product downloads the modules in directory

/var/opt/eset/nod32/lib/mirror

The NOD32 modules are divided into two categories; engine category and  component category. The modules of 
component category are currently only for use on the MS Windows OS.

Currently  the  following types of engine category modules are supported: base scanning modules (prefix engine) 
containing virus signatures  database,  archives support modules (prefix archs) supporting various file system archive 
formats, advanced heuristics modules (prefix advheur) containing implementation of so-called advanced heuristics 
method of virus and worm detection, packed worm scanner  modules  (prefix pwscan) used on MS Windows OS, NOD32 
utilities  modules  (prefix utilmod) used on MS Windows OS and ThreatSense.NET technology support modules (prefix 
charon).

These modules are always necessary for proper running of any NOD32 anti-virus  scanner  based  application  and 
therefore are all downloaded by default at each download process. On the other hand the component category modules 
are platform dependent and language localization dependent and thus the download of component category modules 
is optional.

After download of precompiled NOD32 modules the ‚update.ver‘ file is created in the mirror directory as well. This 
file contains the information about the modules currently stored in the newly created mirror. The newly created mirror 
thus serves as fully functional modules download server and can be used to create subordinate mirros, however, some 
more conditions have to be fullfilled yet. First, as the update utility uses http protocol to download the NOD32 modules 
there must be a http server installed on the computer where the modules are going to be downloaded from. Second, the 
NOD32 modules to be downloaded by other computers have to be placed at the directory path

/http-serv-base-path/nod_upd

where ‚http-serv-base-path‘ is a base http server directory path, as this is the first place where update utility looks 
the NOD32 modules for.

6.1.2. Generation of NOD32 scanner loading modules

Second  part of the update process is the compilation of NOD32 modules loadable by NOD32 scanner from those 
stored in the local mirror.

Typically the following NOD32 loading modules are created: base module (nod32.000), archives support module 
(nod32.002), advanced heuristics module (nod32.003), packed worm scanner module (nod32.004), windows utilities 

NOD32 for Linux/BSD Mail Server



39

module (nod32.005) and ThreatSense.NET support module (nod32.006) in the directory:

/var/lib/nod32

resp. in RedHat Ready and Novell (SuSE) Ready variation of the product the target directory is as follows:

/var/opt/eset/nod32/lib

Note that the above directory is exactly the NOD32 base directory where main NOD32 daemon loads NOD32 
modules from.

6.2. Automatic update of the virus definitions database

To  provide  the highest security for the user, the NOD32 team collects the virus definitions continuously from all 
over the world. The  new patterns can appear within the database in very short intervals. It is therefore useful, and also 
recommended, to trigger an update attempt on a regular basis.

Threre are two ways to provide periodic update of the system. First, the main NOD32 daemon can provide the update 
once ‚av_update_period‘ parameter  defined  in  [update]  section  of  the  main NOD32 configuration file. Second, the 
update can be triggeret externally by using script:

/usr/sbin/nod32_update

Note that the Linux RedHat Ready and Linux Novell (SuSE) Ready products locates the script in directory

/opt/eset/nod32/sbin/nod32_update

In order to trigger update script in one hour intervals, configure periodic scheduler (cron) in Linux OS and BSD OS 
by entering the following line

0 * * * * /usr/sbin/nod32_update

into its configuration file (crontab). To add the above line into the crontab use command line statement

crontab -e

to invoke the editor set up for the current system environment (defined by EDITOR environment variable).
Similar command is valid for Linux RedHat Ready and Linux Novell (SuSE) Ready product

0 * * * * /opt/eset/nod32/sbin/nod32_update

chapter 6 / NOD32 System Update and Maintenance



NOD32 for Linux/BSD Mail Server



Chapter 7:

Tips and Tricks

7  


Ti
ps

 a
nd

 Tr
ick

s



42

This chapter is devoted to describe tips and tricks concerned with configuration of NOD32LMS/NOD32BMS. This 
means it describes configuration of NOD32LMS/NOD32BMS in circumstances when for instance MTA is configured to 
use other software with similar functionality or with functionality that could normally lead to misconfiguration of 
NOD32LMS/NOD32BMS.

7.1. Dropping messages marked by NOD32 as deleted in MTA Postfix

In the Internet there has recently appeared non-negligible increase of the number of the e-mail messages 
containing so-called worm programs. In most cases the infected attachment of such messages cannot be cleaned but 
rather deleted and whole messages even does not contain any reasonable information. In this case it has a sense to  
discard  (or  treat in special way) this kind of messages. Mechanism described in this section can be used to suppress 
messages marked as deleted in MTA Postfix.

First of all one has to add the following entry:

write_to_header = 1

into section [smtp] of the main NOD32 configuration file. This setting will result in a modification of each non-clean 
e-mail message by means the string ’X-NOD32Result: status’ is inserted into header of themessage. Word ’status’ of the 
string is replaced by actual status of the scanning process.

In order to discard all messages that has been marked as ’deleted’, add the following line:

header_checks = regexp:/etc/postfix/header_checks

into the ’/etc/postfix/main.cf’ configuration file. At the same time you will have to create file ’/etc/postfix/header_
checks’ with the following content:

/^X-NOD32Result: deleted/ DISCARD

To reread the newly created NOD32 configuration, enter the following command:

/etc/init.d/nod32d reload

To  accomplish the whole procedure, one has to restart the MTA Postfix.
Note that in older Postfix versions DISCARD functionality may not work. In this case warning message ’Postfix does 

not know the command DISCARD’ appears in the MTA Postfix logging output. This can be only solved by update of the 
Postfix software.

7.2. NOD32LMS/NOD32BMS and TLS support in MTA

Transport Layer Security (TLS) is a protocol guaranting 
data privacy in client/server communication over the 
Internet. The basic principle of TLS is based on the 
SSL encryption of data traveling between client and 
server (We have on our mind the SMTP communication 
between MTA client and server). This has of course non-
negligible consequences for scanning of this kind of 
communication. For instance, once TLS support in MTA is 
enabled, the ’wrapping’ methods are impossible as the 
whole intercepted SMTP communication is encrypted at 
this stage. On the other hand, there is possibility to use 

POSTFIX

NOD32  
Content filter

2525

INTERNET

25

25
2526

MAILBOX

SMPT/TLS

Figure 7-1. Scheme of content filtering in Postfix MTA with 
enabled TLS.

NOD32 for Linux/BSD Mail Server



43

data encryption in communication between local MTA and Internet and still use the ’content filtering’ methods. In MTA 
Sendmail content filtering there is no problem with SMTP TLS support at all as the Sendmail Milter does not relay 
on the SMTP communication and content filtering is done rather internally. On the other hand the Postfix uses SMTP 
protocol for data communication between content filter and MTA. Therefore once the TLS is enabled in Postfix, the 
content filtering method fails as whole the SMTP communication is encrypted. Fortunately, this can be solved on the 
Postfix TLS configuration level. The situation is depicted in a figure 7-1.

As is shown in the figure above, once the TLS is enabled, all the SMTP communication channels including SMTP 
communication with content filter are affected. The only possibility in this case is to disable the TLS support for 
communication between client and server located within localhost. This can be achieved by adding the following line 
into the main Postfix configuration file:

smtp_tls_per_site = hash:/etc/postfix/smtp_tls_per_site

In addition you have to create ‚etc/postfix/smtp_tls_per_site‘ file with the following content:

localhost	 NONE

and provide its appropriate hash table by entering the following command from ‚/etc/postfix‘ directory:

postmap hash:smtp_tls_per_site

By using the above statement the ’/etc/postfix/smtp_tls_per_site.db’ file is created that is used by Postfix to enable 
TLS on per site basis. As far as we have disabled TLS for localhost the content filtering can be used and at the same time 
the SMTP communication between local MTA and Internet is encrypted.

chapter 6 / Tips and Tricks



NOD32 for Linux/BSD Mail Server



Chapter 8:

Let us know 

8  


Le
t u

s k
no

w



��

Dear user, this guide should have given you a good knowledge about the product installation, configuration and 
maintenance. However, writing a documentation is a process that is never finished. There will always be some parts that 
can be explained better or are not even explained at all. Therefore, in case of bugs or inconsistencies found within this 
documentation, please report a problem to our support center
http://www.nod32.com.sg/support

We are looking forward to help you solve any problem concerning the product.

NOD32 for Linux/BSD Mail Server


	Chapter 1:Introduction
	Chapter 2:Installation
	Chapter 3:Product’s Roadmap
	Chapter 4:Integration with E-mailMessaging System
	4.1. Scanning of inbound e-mail messages
	4.1.1. Renaming the original MDA and its replacement by NOD32MDA
	4.1.2. Setting of NOD32MDA (in MTA) as MDA
	4.1.2.1. Setting NOD32MDA in Sendmail MTA
	4.1.2.2. Setting NOD32MDA in Postfix MTA
	4.1.2.3. Setting NOD32MDA in Qmail MTA
	4.1.2.4. Setting NOD32MDA in MTA Exim version 3
	4.1.2.5. Setting NOD32MDA in MTA Exim version 4


	4.2. Scanning of outbound e-mail messages
	4.3. Content Filtering in MTA
	4.3.1. Content filtering in MTA Postfix
	4.3.2. Content filtering in MTA Sendmail
	4.3.3. Content filtering in MTA Exim 3
	4.3.4. Content filtering in MTA Exim 4
	4.3.5. Content filtering in MTA Qmail

	4.4. Alternative methods of content filtering
	4.4.1. Scanning e-mail messages using AMaViS
	4.4.1.1. amavis
	4.4.1.2. amavisd
	4.4.1.3. amavisd-new



	Chapter 5:Important NOD32LMS/NOD32BMS Mechanisms
	5.1. User Specific Configuration
	5.2. Handle Object Policy
	5.3. Black-list and white-list
	5.4. Samples Submission System

	Chapter 6:NOD32 System Update andMaintenance
	6.1. Basic concept of NOD32 system update
	6.1.1. NOD32 mirror creation
	6.1.2. Generation of NOD32 scanner loading modules

	6.2. Automatic update of the virus definitions database

	Chapter 7:Tips and Tricks
	7.1. Dropping messages marked by NOD32 as deleted in MTA Postfix
	7.2. NOD32LMS/NOD32BMS and TLS support in MTA

	Chapter 8:Let us know

