
NOD32 for Linux Servers
Installation Manual
and User’s documentation

w e p r o t e c t d i g i t a l w o r l d s

�

Table of contents

1. Introduction ... 3
2. How to navigate through this guide 5
3. NOD32LS package installation 7
4. NOD32LS base configuration11
5. NOD32LS as for Linux Mail Servers15
5.1. Mail server in UNIX OS environment 16
5.2. Scanning of the inbound e-mail messages 17
5.2.1. Renaming the original MDA and its replacement
 by NOD3 2MDA ... 17
5.2.2. Setting of NOD32MDA (in MTA) as M DA 18
5.2.2.1. Setting Sendmail MTA .. 18
5.2.2.2. Setting Postfix MTA .. 19
5.2.2.3. Setting Qmail MTA .. 20
5.2.2.4. Setting MTA Exim version 3 .. 21
5.2.2.5. Setting MTA Exim version 3 (more general) 22
5.2.2.6. Setting MTA Exim version 4 .. 23
5.3. Scanning the outbound e-mail messages 24
5.4. Content filtering in MTA.. 26
5.4.1. Content filtering in MTA Postfix 26
5.4.2. Content filtering in MTA Sendmail 26
5.4.3. Content filtering in MTA Exim .. 27
5.4.4. Content filtering in MTA Qmail .. 28
5.5. Alternative methods of scanning e-mails 28
5.5.1. Scanning e-mail messages using AMaViS........................ 28
5.5.1.1. amavis .. 28
5.5.1.2. amavisd .. 29
5.5.1.3. amavisd-new ... 29
6. NOD32LS as for Linux File Servers31
6.1. On-demand scanner. .. 32
6.2. On-access scanner .. 32
6.2.1. On-access scanner powered by Dazuko 33
6.2.1.1. Operation principle... 33
6.2.1.2. Installation and configuration 33
6.2.1.3. Tips ... 34
6.2.2. On-access scanner using preload libc library 34
6.2.2.1. Operation principle... 36
6.2.2.2. Installation and configuration 36
6.2.2.3. Tips ... 36
7. Sample submission system37
8. NOD32 system update and maintenance39
8.1. Basic concept of NOD32 system update 40
8.1.1. NOD32 modules organization .. 40
8.1.2. NOD32 mirror creation... 40
8.1.3. Generation of NOD32 scanner loading modules 40
8.2. Subordinate mirrors creation .. 41
8.3. Automatic update of the virus definitions database 42
8.3.1. Structure and use of autom atic update script 42
8.3.2. Periodic update of the virus definitions database 42
9. Tips and tricks ...43
9.1. Dropping messages marked by NOD32
 as deleted in MTA Postfix .. 42
9.2. NOD32LS and TLS support in MTA 42
10. Let us know ...45
A. Installed content of NOD32LS package47

NOD32 for Linux Server , First Edition
Published on 25th September 2005
Copyright © 2005 Eset, spol. s r. o.
All rights reserved.

NOD32 for Linux Server was developed by Eset, s. r. o. For

NOD32 for Linux Server was developed in co-operation with
ProWeb Consulting. For more information visit www.pwc.sk.
All rights reserved. No part of this documentation may be
reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical,
photocopying, recording, scanning, or otherwise without
a permission in writing from the author.
Eset, s. r. o. reserves the right to change any of the described
application software without prior notice.

Revision History
Revision 2.51-1 (09/01/2006)
Revision 2.50-1 (01/01/2005)
Authorized transcription of NOD32 for Linux Servers (version
2.50-1) user‘s guide.

NOD32 for Linux Servers

more information visit www.nod32.com.sg.

Version 2 Singapore Pte Limited
371 Beach Road, Keypoint Building #20-07, Singapore 199597

http://www.nod32.com.sg/

Chapter 1:

Introduction

1  

In
tr

od
uc

tio
n

�

Dear user, you have acquired NOD32 for Linux Servers – NOD32LS – probably the best antivirus system for servers
running under the Linux operating system. As you will soon realize, the NOD32LS system using the state-of-the-art
NOD32 scanning engine has unsurpassed scanning speed and detection rate, combined with a very small footprint that
makes it the ideal choice for any Linux OS server.

The current version of the NOD32LS is, from the point of view of its functionality, compound from so-called NOD32
for Linux Mail Servers part (LMS) and from so-called NOD32 for Linux File Servers part (LFS). The following is a short
summary of key features of the system.

NOD32 scanning engine algorithms provide both the highest detection rate and the fastest scanning times. The
system is developed to run on the single-processor units as well as on the multi-processor units. It includes unique
advanced heuristics for Win32 worms and back-doors. Inbuilt NOD32 archivers unpack archived objects without the
need for any external programs. In order to increase speed and efficiency of the system, its architecture is based on
the running daemon (resident program) where all the scanning requests are sent to. Six various levels of logging can
be configured to get information about system activity and infiltrations. One of the major advantages is the fact that
the system installation does not require external libraries or programs except for libc. The system can be configured
to notify any person in case of detected infiltration. Moreover, information about infiltration can be configured to be
written into an e-mail header, footer and subject (LMS only). The system (LMS only) is MTA-independent, i.e. the NOD32
for Linux Mail Servers solution does not depend on Mail Server used. The system (LMS) can be configured in order to
define setting of the scanner individually for e-mail recipient address (resp. recipient domain address) for user whom
e-mail is locally delivered.

To run efficiently, the NOD32LS requires just 11MB of hard-disk space and 8MB of RAM. The system runs smoothly
under the 2.2.x, 2.4.x and 2.6.x Linux OS kernel versions. The system (LMS only) supports most popular server software
including Sendmail, Postfix, Qmail, Exim, etc.

The NOD32LS runs under all of the common Linux distributions:
Fedora Core 1 and higher, Red Hat version 5.x and higher, Mandrake version 5.x and higher, Mandriva version 2005

and higher, 1 Chapter 1. Introduction SuSE version 6.x and higher, Debian version 2.x and higher. Ubuntu version 4.x
and higher.

From lower-powered, small office servers to enterprise-class I SP servers with thousands of users, NOD32LS delivers
the performance and scalability you expect from a UNIX based solution and the unequaled security of NOD32.

chapter 1 / Introduction

Chapter 2:

How to navigate through
this guide

2  

Ho
w

 to
 n

av
ig

at
e

th
ro

ug
h

th
is

gu
id

e

�

This guide is assumed to be the complex users’ guide into the NOD32LS system. It covers information on configuration
and maintenance of the system in order to run efficiently for various supported Linux OS distributions and various e-
mail server systems.

Therefore, assuming you are a typical system administrator being too busy to read all these pages, here are some
hints on how to surf through this guide with just catching the most relevant information necessary to setup and run.

First, look into the foreword to each chapter to get information related to relevance of the information stored in the
chapter. Often you will get a hint to skip directly to the section that contains just the step by step statement information
in order to suffice what is necessary.

Second, besides the information in this guide, there exists manual pages related to the individual components of the
NOD32LS package. The pages are always a useful reference for getting actual information on the accurate components
setting options that are not all mentioned here.

Third, note that the guide is divided in a following manner:
Chapter 1	 Introduction.
Chapter 2	 This text, that you have almost finished reading.
Chapter 3	 Leads you step by step to install the system.
Chapter 4	 Lists common configuration of the NOD32LS system.
Chapter 5	 Lists Linux Mail Server specific configurations.
Chapter 6	 Lists Linux File Server specific configurations.
Chapter 7	 Contains description of so-called samples submission system (Charon).
Chapter 8	 Will help you keep your system up to date.
Chapter 9	 Contains tips and tricks on configuration of NOD32LS.

NOD32 for Linux Servers

Chapter 3:

NOD32LS package
installation

3  

NO
D3

2L
S p

ac
ka

ge
 in

st
al

la
tio

n

�

Before further explanations concerned with NOD32LS, let’s first install the whole thing. In order to do so, one has to
download the appropriate packages from the NOD32 server. Use your favorite web browser to navigate to the NOD32
download page
http://www.nod32.com.sg/download/

At this page you can see a set of NOD32LS packages listed for various UNIX OS distributions. Identify the appropriate
distribution of the actual OS installed on your computer and download the appropriate package.
Note: For the download process to succeed, the user name and password for authentication against the NOD32 server
is required. You will receive both from your vendor.

After successful download the binary file
nod32ls-x.xx-x.i386.ext.bin

is present within your download directory, where the ’ext’ is the OS distribution dependent suffix of the package. To
extract the installation package from this file one has to write the following statement
sh ./nod32ls-x.xx-x.i386.ext.bin

within the directory where the package file has been downloaded. As a result the User License Acceptance
Agreement related with the product will be shown. It is the decision of the user whether agree or not with the
acceptance, however, the installation package will be extracted into the current working directory only in case the
acceptance has been confirmed.

Before further steps it is yet necessary to provide license file that has been obtained from vendor within the
directory
/etc/nod32/license

i.e. if this is the first time installation, it is necessary to create this directory and copy the ’*.lic’ license file into it.
After successful extraction of the package file the whole installation relies on one command line statement. In case

the OS distribution installed at your computer is one of the following (Fedora, Red Hat, SuSE, Mandrake, Mandriva or
other Linux OS using Red Hat package manager) you need to write the statement:
rpm -i nod32ls-x.xx-x.i386.rpm

In case the NOD32LS is already installed on your computer you will receive the following or similar message in
return.
package nod32ls-x.xx-x.i386.rpm is already installed

In this case you have to use a different switch -u to update the appropriate rpm package, so the statement will look
like this
rpm -u nod32ls-x.xx-x.i386.rpm

The Debian Linux OS uses its own package manager for installation, so called dpkg (debian packager) and the files
are also of different format (suffix deb). So the appropriate statement for installation and/or update of the package in
this case will be as follows
dpkg -i nod32ls-x.xx-x.i386.deb

Once the NOD32LS package is installed, one can see at least two main NOD32LS scanning daemons nod32d running
in the background. One of the daemons serves as the process and threads manager. The rest are responsible for objects
scanning. The installation apparatus is done in a way that it starts the daemons automatically. One can also see that
from now the nod32d daemons will also start immediately after a computer boot. To be absolutely certain, the fact that
the daemon is running can be checked by typing the command
ps -C nod32d

that should return the following or similar message
PID TTY TIME CMD
2226 ? 00:00:00 nod32d
2229 ? 00:00:00 nod32d

NOD32 for Linux Servers

�

If this is not the case, then something is wrong and you should report this as a bug to the NOD32 support service. The
most common reason for not proper daemon initialization will be missing license file.

As you will soon realize, there are also other daemons within a NOD32LS package that are required to run in some
system configurations. For instance the daemon nod32smtp or nod32smfi. However, since the functionality of these
daemons is not required in all cases, the installation script does not provide the automatic start-up of them at system
boot. If necessary one has to do it by hand. Here is the description of how to do this.

In order to start, for instance, nod32smtp daemon under Red Hat or Mandrake, one has to write the following
command
/sbin/service nod32smtp start

Under SuSE the appropriate command would be
/sbin/startproc /usr/bin/nod32smtp

Finally, for the Debian the equivalent command is
/sbin/start-stop-daemon --start --exec /usr/sbin/nod32smtp

Similarly, for stopping the appropriate service, one would write under RedHat or Mandrake the following
command
/sbin/service nod32smtp stop

Under SuSE the appropriate command would be
/sbin/killproc /usr/bin/nod32smtp

and for Debian the equivalent command is
/sbin/start-stop-daemon --stop --name nod32smtp

Now we will describe how to provide the automatic start of the daemon at system boot. In order to do so, one has to
write on Red Hat or Mandrake system the following commands
/sbin/chkconfig --add nod32smtp

On SuSE Linux the following command will be valid
/sbin/insserv /etc/init.d/nod32smtp

and finally for the Debian the statement
/usr/sbin/update-rc.d nod32smtp defaults

can be used. After using these commands, the system will create all the necessary settings for the automatic start
of the nod32smtp daemon at system boot.

However, we still have to discuss one circumstance about the NOD32LS package installation. In case none of the
above OS distributions correspond to your actual operating system, you can try to install NOD32LS from the tgz (tarred
and gzipped) format. The rest of this chapter is a step by step guide to do so, therefore if this is not relevant to you, skip
directly to the next section. In order to install NOD32LS from a generic tgz file, unpack the file nod32ls-x.xx-x.i386.lnx.
tgz to the root directory:
tar -xvzf nod32ls-x.xx-x.i386.lnx.tgz -C /

See appendix A for complete NOD32LS package content installed at the proper location.
Note: After copying the NOD32LS components you have to adjust the initialization scripts for the daemon programs
of NOD32LS. In the /etc/init.d directory you should see a short scripts, corresponding to the individual NOD32LS
components and OS distributions by their names. For instance
/etc/init.d/nod32d.deb

is the initialization script for nod32d daemon used for Debian Linux distribution. Try adjusting one of the scripts for
each daemon in order to make it able to start.

chapter 3 / NOD32LS package installation

Chapter 4:

NOD32LS base configuration

4  

NO
D3

2L
S b

as
e

co
nf

ig
ur

at
io

n

12

All the necessary configuration files concerned with functionality of NOD32LS are stored within a directory
/etc/nod32

 In the following text all the files stored within this directory are going to be discussed.

/etc/nod32/nod32.cfg

This is a most important file, commonly known also as ’main NOD32 configuration file’. After exploring the file you
can see that its structure is composed from various parameters of NOD32LS that are all distributed within sections (note
the section names are always enclosed in square brackets – []). There is always one global and several special sections
in the file. The configuration of the whole system (i.e. key features discussed within Introduction to this guide and
much more) is provided by setting parameters used within individual sections. The parameters defined within a global
section are valid for all modules (sometimes we call those modules ‘agents’) of NOD32LS. The parameters defined within
a special section (also called ‘agent’ section), on the other hand, are valid only for an appropriate agent of NOD32LS.
At this point we should describe the individual parameters meaning, however, we will not do it here as it is done in
manual pages corresponding to the appropriate module. For instance the parameters that can be used in global and
also in special sections are described in the manual page concerned with this file (nod32.cfg(5)). The manual page can
be invoked using the following statement
man nod32.cfg

Similarly, the parameters that can be only used in the special sections are described in the manual pages concerned
with individual modules, i.e. nod32mda, nod32smtp, nod32smfi, nod32cli, nod32pipe, nod32pac.

We recommend user to use these resources always when referring to the parameters of NOD32LS components. Refer
to the appendix A to see a full list of manual pages installed.

Particularly, concerning main NOD32 configuration file we recommend user to read manual page nod32.cfg(5) in
order to get detailed information on organization and philosophy of NOD32LS configuration.

/etc/nod32/nod32.auth

This is the so called ‘user authentication file’ that is used to authenticate the user against the NOD32 server when
making an update of the virus signatures database.We will not discuss the meaning of the file here as it is done later in
chapter 8 with more details.

/etc/nod32/sig_*.html.example

When browsing through the /etc/nod32 directory you have probably noticed a set of files whose names are starting
with same prefix ‘sig’ and ending with suffix ‘html.example’. These are the html templates that can be used to define
the text, inserted as a footnote, into the scanned e-mail messages (use your favorite editor to explore the files). In
order to enable this feature, you have to set an appropriate option in the main configuration file (write_to_emails)
that can be defined in a global section of the file as well as in the individual modules section of the file depending on
what level of footnote writing we would like to achieve in appropriate individual modules (see nod32d manual page
for detail). The other requirement to enable the custom html templates is to remove the suffix ‘.example’ from all the
file names of the templates. In this case the NOD32LS system will ignore the default footnote text and will use the text
predefined in the html files instead. The meaning of the individual files can be explained directly in the structure of e-
mail footnotes inserted. When NOD32 system has detected infiltration in the e-mail message, the following footnote
template is written into the footnote when enabled.

NOD32 for Linux Servers

13

e-mail header	|	From:
.	 |	To:

e-mail body 	 |
.	 |
.	 |	html text of the file sig_header_infected.html
.	 |	list of infiltrations found by the scanner
.	 |
.	 |html text of the file sig_footer_infected.html

When NOD32 system has not detected any infiltration in the e-mail message, the following footnote template is
written into the footnote when enabled.

e-mail header	|	From:
.	 |	To:

e-mail body	 |
.	 |
.	 |	html text of the file sig_header_clean.html
.	 |
.	 |	list of objects scanned by the scanner
.	 |
.	 |	html text of the file sig_footer_clean.html

When NOD32 system could not scan the complete e-mail message, the following footnote template is written into
the footnote when enabled.
e-mail header	|	From:
.	 |	To:

e-mail body	 |
.	 |
.	 |	html text of the file sig_header_not_scanned.html
.	 |
.	 |	list of object scanned by the scanner
.	 |
.	 |	html text of the file sig_footer_not_scanned.html

/etc/nod32/license

This is the license directory where all licenses related with individual products are stored. Before NOD32 scanner
initialization daemon will alway check the licenses found here and based on this information the appropriate part of
the NOD32LS system will be enabled.

chapter 4 / NOD32LS base configuration

/etc/nod32/nod32d_license_warning_script

This script (if an appropriate functionality enabled) is executed last 30 days (once per day) before product license
expiration. The script is used to send notification e-mail about the expiration status to a system administrator.

/etc/nod32/nod32d_script

There is one more file within /etc/nod32 directory. It is a NOD32LS notification script. In case NOD32 scanner has
found an infiltration within a scanned message, this script (if enabled) is used to send a notification about the event
to any person defined within a script. This functionality is enabled by logical parameter of the main configuration file
(exec_script = yes). To get more information on this topic, read the section NOTIFICATION within the nod32d manual
pages.

Chapter 5:

NOD32LS as for
Linux Mail Servers

5  

NO
D3

2L
S a

s f
or

 Li
nu

x
M

ai
l S

er
ve

rs
.

16

This chapter describes the process of the NOD32LMS part configuration.

5.1. Mail server in UNIX OS environment

This chapter is concerned with the basics of the e-mail messaging system, also commonly called e-mail server
system, however, e-mail server is only part of the more complex messaging system. For better understanding of the
NOD32LS operation, knowledge of the messaging system basic principles is of paramount importance. Therefore we do
not recommend to skipping this section unless this knowledge is already acquired. The following diagram is a rough
scheme of the UNIX OS e-mail messaging system.

The meaning of abbreviations used in the scheme of
figure 3-1 is as follows.
MTA (Mail Transport Agent)
A program (for instance sendmail, postfix, qmail, exim,
etc.) receives e-mail messages from local and/or remote
domains and forwards it for further delivery. Generally
speaking,MTA is an agent providing mail transfer among
other e-mail servers MTAs and/or MUAs (see below).
MDA (Mail Delivery Agent)
A program (maildrop, procmail, deliver, local.mail, etc.)
providing delivery of an e-mail into a particular mailbox.
MUA (Mail User Agent)
An e-mail processing program (MS Outlook, Mozilla Mail,
Eudora, etc.) that allows user to access and manage e-
mail messages (i.e. read, compose, print them etc.).
MAILBOX
A file or a file structure on a disk serving as the storage
space for e-mails.
Note: There are several formats of Mailboxes in Linux OS.

(e.g.: an old fashioned format where emails for each user are stored sequentially in one user appropriate file located in
directory /var/spool/mail; MBOX (a bit newer but still an old format) with e-mails stored sequentially in one file located
within user home directory; MAILDIR with e-mail stored in a separate file within a hierarchical directory structure.

Now the scheme in the figure 3-1 represents a typical e-mail gateway placed at an entrance to some local network.
This means that the e-mail server receives data communication typically via TCP port 25 (SMTP – Simple Mail Transfer
Protocol is used within this process). The message received is transfered by the local MTA either to another remote e-
mail server system or the message is delivered by using local MDA into the appropriate MAILBOX (we assume that each
user belonging to the local network has a corresponding MAILBOX located at the server). It is then a responsibility of
the client’s local MUA to provide download and/or correct interpretation of the message at the client’s computer. To
get the data from an e-mail server system the MUA uses typically TCP port 110 (POP3 – Post Office Protocol) or TCP
port 143 (IMAP – Internet Message Access Protocol). On the other hand if a user at the client’s computer would like to
send an e‑mail message to the Internet, it is again the responsibility of the local MUA to deliver the message via TCP
port 25 (SMTP) to the local MTA (located at an entrance to the local network) that will take care of the further message
delivery.

The operating principle of NOD32LS system is based on the idea of data communication interception at the various
phases of its transfer and of scanning this communication by NOD32 scanning engine. Those locations are marked in the

NOD32 for Linux Servers

MTA

MDA

Mailbox

MUA

TCP port 25 (SMPT) (SMPT)

e-mail server

S1 PIPE

S3

FILE

S2

TCP port 110 (POP3)
OR 143 (IMAP)

Client Clients
Computer

TCP port 25 (SMPT)

INTERNET

Figure 5-1. Scheme of UNIX OS e-mail messaging system.

17

figure 3-1 by symbols S1, S2 and S3. In the following text we will distinguish between three scenarios of e-mail message
scanning which basically corresponds to the referred marks:
*	 Scanning of inbound e-mail messages (We define the term „inbound message” for e-mail message with the target

address corresponding to the destination located at the local domain. Similarly the „outbound message” will be
a message bound to some remote domain via its target address.) marked in the figure by symbol S1, is used to
protect e-mail messages delivered from the outside Internet to the local MAILBOX-es belonging to local users.

*	 Scanning of outbound messages marked in the figure by symbol S2 is used to protect the e-mail messages sent by
local user MUAs to the outside Internet.

*	 Bi-directional scanning (usually known also as content filtering in MTA) marked by symbol S3 is devoted to check
both directions (or even all directions) of the e-mail messages flow.

Note: Bi-directional scanning scenario is more complex than the other two methods previously discussed. The bi-
directional scanning checks not only message flow directed from Internet to a 13 Chapter 5. NOD32LS as for Linux Mail
Servers . local network or vice versa. Indeed, this scanning also takes care of the messages that will come to the gateway
server and are further routed to the different remote domains. Therefore in a general case this kind of scanning can be
used typically as a checkpoint between two different Internet networks. From this point of view, concerning our local e-
mail gateway, this kind of scanning is not necessarily required, as this creates a much higher load on the server computer
than previously discussed scenarios.

5.2. Scanning of the inbound e-mail messages

Scanning of the inbound e-mail messages is
performed at the time of message transmission between
MTA and MDA (as marked by symbol S1 in figure 3-1). The
generic scheme of the process is shown in the figure 5-1.

The incoming e-mail is scanned by nod32mda
module supported by daemon nod32d. Scanned e-mail
is afterward forwarded to the original MDA for further
delivery to the MAILBOX.

As shown in the figure 5-1, the virus scanning feature
can be enabled by appropriate configuration setting of
the MTA agent and nod32mda module. It is also apparent
from the figure that the solution is MDA independent.
Note: The majority of mail servers use procmail or
maildrop (MDA). The nod32mda module supports
any MDA. The following MDAs were tested: procmail,
maildrop, deliver and local. mail.

In general, the virus scanning feature can be enabled in two ways described below.

5.2.1. Renaming the original MDA and its replacement by NOD32MDA

This is a simple approach even without a need to make any changes in the agent MTA. But still, prior starting with the
proper setup modification, the user is required to know exactly what MDA agent is used by the system. This information
can be grabbed only by exploring the MTA configuration file. For illustration purposes, we will use the MDA procmail.

In the next step we have to find the location of the MDA. In order to do so we use the following command:

chapter 5 / NOD32LS as for Linux Mail servers

FILE FILE

FILE

PIPE

PIPE NOD32D

MTA

NOD32MDA

Mailbox

MDA

MTA

Mailbox

MDA

Figure 5-2. The scheme of the inbound e-mail message
delivery without (left part of the figure) and with (right
part of the figure) the NOD32 scanning.

18

which procmail
that will give as the full path to agent MDA in return. Now the most important part of the modification is to rename

the original procmail binary file to procmail.real:
mv /usr/bin/procmail /usr/bin/procmail.real

and create the soft link to module nod32mda with the name ‘procmail’ located in the directory where the original
MDA procmail was found, i.e. with the name ‘/usr/bin/procmail’:
ln -s /usr/bin/nod32mda /usr/bin/procmail

With the above modifications, we have ensured that all the messages originally sent by the MTA for delivery to
MAILBOX (by using an original MDA) will now be primarily sent to module nod32mda. Still there remains the second
part of the modification to provide that all messages processed by nod32mda will be sent to the original procmail MDA
(at this time renamed to procmail.real). In order to do so, we have to modify parameter ‘mda_path’ within the section
[mda] of the main NOD32LS configuration file (/etc/nod32/nod32.cfg) as follows:
mda_path = ”/usr/bin/procmail.real”

After all of the above modifications one has to restart the daemon nod32d in order to reread the new configuration
of NOD32LS.

Note that in the above example we have used procmail as an MDA, however, the whole procedure can be done with
any other known MDA which is a great advantage of this approach. On the other hand, there is a potential problem
within this configuration that may occur in circumstances of MDA software upgrade. Indeed, once we will decide to
upgrade the MDA software (for instance procmail in our case), the upgrading mechanism will provide the new binary
file /usr/bin/procmail that will cancel the link to nod32mda scanning module created by the above procedure and
the configuration will be broken. Thus, even if the approach suggested in this section works in all cases, it is always
necessary keep in mind that the problem of the link cancellation may occur and one has always, after the MDA software
upgrade, to repeat the whole procedure described above.

5.2.2. Setting of NOD32MDA (in MTA) as MDA

This section contains a more rigorous approach to provide scanning of inbound messages than the one described
in the previous section. Even if the approach described here requires modi- fication of the MTA configuration, we
recommend it due to the fact that it does not bring the potential problems, described at the end of the previous section,
to the system.
Note: Some MTA modules may be configured to not need an MDA component to deliver emails. In such cases, it may be
necessary to configure the MTA to use any, by NOD32LS supported, external MDA (for instance procmail or maildrop).

5.2.2.1. Setting Sendmail MTA

An MTA Sendmail stores all its configurations in one file /etc/mail/sendmail.cf (in older operating systems it can be
stored in /etc/sendmail.cf). The procedure described here will therefore be done only with this one file and of course
with the main NOD32LS configuration file (/etc/nod32/nod32.cfg) .

First one has to grab information on the MDA used by Sendmail. This can be found in the Sendmail configuration
file (/etc/mail/sendmail.cf) in the section called ‘Local and Program Mailer specification’ at the parameter ‘P’ (in the
sentence starting with word ‘Mlocal’). Yet, before performing any changes to the Sendmail configuration file, please,
make a back-up of this file (for example with the name sendmail.cf.orig). Now let’s return to the description of the
sendmail.cf parameters. The parameter ‘P’ represents the full path to the MDA used. In order to involve ‘nod32mda’
module into the message processing, one has to replace this path by the appropriate ‘nod32mda’ module path (i.e. /

NOD32 for Linux Servers

19

usr/bin/nod32mda) . At the same time the appropriate change has to be done for parameter ‘A’ (located at the same
sentence of Sendmail configuration file). Note that the ‘A’ parameter contains the file name of the original MDA
component followed by some switches. These switches represent macros used by Sendmail when processing a message.
Therefore none of the switches may be changed when modifying the name of the original MDA component at the
parameter ‘A’. For instance, if the original MDA component path is /usr/bin/procmail, the appropriate sentence in the
Sendmail configuration file can look like this.
Mlocal,	P=/usr/bin/procmail
	 F=lsDFMAw5:/|@qSPhnu9
	 S=EnvFromL/HdrFromL
	 R=EnvToL/HdrToL
	 T=DNS/RFC822/X-Unix
	 A=procmail -t -Y -a $h -d $u

After the modifications have been performed, the appropriate sentence will look like this.
Mlocal,	P=/usr/bin/nod32mda
	 F=lsDFMAw5:/|@qSPhnu9
	 S=EnvFromL/HdrFromL
	 R=EnvToL/HdrToL
	 T=DNS/RFC822/X-Unix
	 A=nod32mda -t -Y -a $h -d $u
Note: Please, in case you are reading the ASCII form of this guide, do not drag and drop the above sentence, since it may
not work. Indeed, it can be that the switches used here as an example will not work in your case as they are dependent
on the version of Sendmail MTA.

With the above modifications we have ensured that all the messages originally sent by the MTA for delivery to the
MAILBOX (by using an original MDA) will now be primarily sent to module nod32mda.

Note that in case user would like to pass command line parameter to the nod32mda agent it is necessary to define
the parameter A in different way. Agent nod32mda will accept command line parameters only in case the sentence ‘--’
is added before them. So for instance to pass command line option --user the nod32mda agent the A parameter of the
sendmail configuration file has to be defined as follows.
A=nod32mda -t -Y -a $h -d $u -- --user $u

In this case agent ‘nod32mda’ will instruct daemon ‘nod32d’ to search special section [user] within the configuration
file.

Yet remains the second part of the modification to provide that all messages processed by nod32mda will be sent
to the original MDA. In order to do so, we have to modify the parameter ‘mda_path’ within the section [mda] of the
main NOD32LS configuration file (/etc/nod32/nod32.cfg) to the original MDA component. The original MDA component
can be, at this stage of the procedure, still found in the back-up file (/etc/mail/sendmail.cf.orig) you have created.
Thus assuming your original MDA component is (/usr/bin/procmail) the appropriate parameter of the main NOD32LS
configuration file will look like this:
mda_path = ”/usr/bin/procmail”

Note (for Debian users): The Debian distribution uses the following MDA: /usr/lib/sm.bin/sensible-mda. Note that
this is not a full-blown MDA, it is rather a wrapper. However, the mda_path, in this case has the following format:
mda_path = ”/usr/lib/sm.bin/sensible-mda”

To accomplish the whole procedure, one has to restart both the MTA Sendmail and the daemon nod32d.

chapter 5 / NOD32LS as for Linux Mail servers

20

5.2.2.2. Setting Postfix MTA

An MTA Postfix stores its configuration in several files. However, the modifications necessary to be described in this
section will be done only with the main Postfix configuration file (/etc/postfix/main.cf) and of course with the main
NOD32LS configuration file (/etc/nod32/nod32.cfg) .

First one has to grab information on the MDA used by Postfix. This can be found by exploring the main Postfix
configuration file (/etc/postfix/main.cf). To make all things easier, the authors of Postfix have written a helper utility
to work with this file, so called ‘postconf’, so all the necessary steps will be done by using this utility. Also, before any
further steps, please make a back-up of the original main Postfix configuration file (for instance, with the name /etc/
postfix/main.cf.orig).

Now let’s assume that the original MDA component is ‘/usr/bin/maildrop’. Then by using a command
postconf mailbox_command

we will receive the following information on return:
mailbox_command = maildrop -d ”$USER” ”$EXTENSION”

In the next step we will use the ‘which’ command
which maildrop

that will give us the full path to the binary file by return. Now, in order to involve module nod32mda into the
message processing, we have to replace the MDA maildrop with the module nod32mda.Write the following command
in order to do so:
postconf -e ’mailbox_command =  nod32mda -d ”$USER” ”$EXTENSION”’
Note: Please keep in mind that the switches used in ‘mailbox_command’ after the MDA component must stay the same
as in the original configuration file, otherwise the current configuration may not work properly.

Note that in case user would like to pass command line parameter to the nod32mda agent it is necessary to define
mailbox_command parameter in a different way. Agent nod32mda will accept command line parameters only in case
the sentence ‘--’ is added before them. So for instance to pase command line option --user the nod32mda agent the
mailbox_command option has to be defined as follows.
postconf -e ’mailbox_command = nod32mda -d ”$USER” ”$EXTENSION” -- --user ”$USER”’

In this case agent ‘nod32mda’ will instruct daemon ‘nod32d’ to search special section [user] within the configuration file.
With the above modifications we have ensured that all the messages originally sent by MTA for delivery to MAILBOX

(by using an original MDA) will now be primarily sent to module nod32mda. Still there is the second part of modification
to provide that all messages processed by nod32mda will be sent to the original MDA. In order to do so, we have to
modify the parameter ‘mda_path’ within the section [mda] of the main NOD32LS configuration file (/etc/nod32/nod32.
cfg) to the original MDA component. The original MDA component can be at this stage of the procedure still found in
the back-up file (/etc/postfix/main.cf.orig) you have created. Thus assuming your original MDA component is (/usr/bin/
maildrop) the appropriate parameter of the main NOD32LS configuration file will look like this:
mda_path = ”/usr/bin/maildrop”

To accomplish the whole procedure, one has to restart both the MTA Postfix and the daemon nod32d.

5.2.2.3. Setting Qmail MTA

The delivery options in the Qmail program are configured via the command line parameters at the time of program
execution or by using short scripts where the appropriate command line statements are stored. In the following we
assume that the Qmail is installed in a /var/qmail directory and there is a Qmail’s starting script called usually ‘rc’ within
this directory that is always executed at the start-up of Qmail by running the standard statement
qmailctl start

NOD32 for Linux Servers

21

In a simplest case the script (/var/qmail/rc) is of the following content:
#!/bin/sh
exec env – PATH=”/var/qmail/bin:$PATH” qmail-start ./Maildir/ splogger qmail
Note: The first qmail-start argument tells him where to deliver messages to. This time it is a special directory structure
locating in ./Maildir within the local user home directory. There are, indeed, more possibilities to be written at the place
of the first command line argument (for instance ./Mailbox to deliver the locally delivered messages to the MAILBOX
file located at the local user home directory; ’|preline procmail’ to use the procmail MDA as a local deliver agent, etc. See
the dot-qmail(5) manual page).

In order to involve the module nod32mda into the message delivery process the user is required to prepend ‘|/usr/
bin/nod32mda‘ to the first command line argument of qmail-start, i.e. the starting script (var/qmail/rc) will look as
follows:
#!/bin/sh
exec env – PATH=”/var/qmail/bin:$PATH” \
qmail-start ’|/usr/bin/nod32mda ’./Maildir/ splogger qmail
Note: There is a space before the second ’ and no space after it. This configuration is independent of the first qmail-start
argument, just be sure the original argument is still at the end of the new.

With the above modifications, we have provided that all messages originally processed by the MTA for delivery
will now be primarily sent to module nod32mda. Still there is the second part of the modification to provide that
all messages processed by nod32mda will be passed back to Qmail’s delivery program, that will take care about the
message successful delivery. For this we have to modify the parameter mda_path located in the section [mda] of the
nod32 configuration file to use a custom script
mda_path = ”/var/qmail/bin/qmail-nod32mda”

that you should create with this contents and run chmod a+x on it:
#!/bin/sh
exec qmail-local -- ”$USER” ”$HOME” ”$LOCAL” ”” ”$EXT” ”$HOST” ”$SENDER” ”$1”

In this configuration, in case of infection or temporary error, nod32mda will automatically (based on present
environment variables) use Qmail’s recognized exit codes (100 or 111, see the manual page of qmail-command(8)). If
you want to pass some command line arguments to nod32mda itself, you have to specify them in the first qmail-start
argument by appending the text ‘ -- --user ”$USER”’ to it. Our example rc file will then look like this:
#!/bin/sh
exec env – PATH=”/var/qmail/bin:$PATH” \
qmail-start ’|/usr/bin/nod32mda ’./Maildir/’ -- --user ”$USER”’ splogger qmail

5.2.2.4. Setting MTA Exim version 3

An MTA Exim version 3 stores its configuration in the file /etc/exim/exim.conf (resp. /etc/exim.conf). The procedure
described here will therefore be done on ly with this one _le and of course with the main NOD32LS configuration file
(/etc/nod32/nod32.cfg) . First one has to grab information on MDA used by Exim. This can be found in the main Exim
configuration file (/etc/exim/exim.conf) in the section usually called ‘TRANSPORTS CONFIGURATION’. However, first
before any further steps, please make a back-up of the original main Exim configuration file (for instance with the
name /etc/exim/exim.conf.orig). Now let’s look inside the content of the appropriate section responsible for local
delivery. This can, for instance, look like the following, where we assume the procmail be the original MDA component:
TRANSPORTS CONFIGURATION
  procmail_pipe:
   driver = pipe

chapter 5 / NOD32LS as for Linux Mail servers

22

   command = /usr/bin/procmail -d $local_part
   return_path_add
   delivery_date_add
   envelope_to_add
   check_string = ”From”
   escape_string = ”>From”
   user = $local_part
   group = mail
DIRECTORS CONFIGURATION
  procmail:
   driver = localuser
   transport = procmail_pipe

As can be seen in this screenshot, the original MDA component is referenced in the configuration file by parameter
‘command’.
Note: Please note that besides the section related to transport there should always be defined the section usually called
‘DIRECTORS CONFIGURATIONS’ defined in the configuration file where the appropriate parameter transport is referenced.
In the next step we will use the ‘which’ command
which procmail

to get the full path of this MDA component. Now, in order to involve the module nod32mda into the message
processing, we have to replace the MDA procmail by the module nod32mda. In order to do so, we are required to replace
the appropriate line in the main Exim configuration file so it will look as follows:
command = /usr/bin/nod32mda -d $local_part
Note: Please keep in mind that the switches used in ‘command’ after the MDA component has stayed the same as
in the original configuration file, otherwise the current configuration may not work properly. Note that in case user
would like to pass command line parameter to the nod32mda agent it is necessary to define parameter command
in a different way. Agent nod32mda will accept command line parameters only in case the sentence ‘--’ is added
before them. So for instance to pass command line option --user the nod32mda agent the parameter ‘command’
has to be defined as follows.
command = /usr/bin/nod32mda -d $local_part -- --user $local_part

In this case agent ‘nod32mda’ will instruct daemon ‘nod32d’ to search special section [user] within the configuration file.
With the above modifications we have ensured that all the messages originally sent by the MTA for delivery to the

MAILBOX (by using an original MDA) will now be primarily sent to module nod32mda. Still there remains the second
part of the modification to provide that all messages processed by nod32mda will be sent to the original MDA. In order
to do so, we have to modify the parameter ‘mda_path’ within the section [mda] of the main NOD32LS configuration
file (/etc/nod32/nod32.cfg) to the original MDA component. The original MDA component can be, at this stage of the
procedure, still found in the back-up file (/etc/exim/exim.conf) you have created. Thus assuming your original MDA
component is (/usr/bin/procmail) the appropriate parameter of the main NOD32LS configuration file will look like this:
mda_path = ”/usr/bin/procmail”

To accomplish the whole procedure, one has to restart both the MTA Exim and the daemon nod32d.

5.2.2.5. Setting MTA Exim version 3 (more general)

An MTA Exim version 3 stores its configuration in the file /etc/exim/exim.conf (resp. /etc/exim.conf). The procedure
described here will therefore be done only with this one file and of course with the main NOD32LS configuration file (/
etc/nod32/nod32.cfg).

NOD32 for Linux Servers

23

Please, note that the configuration described here is MDA independent by means it can be used in cooperation with
any MDA already working with Postfix MTA. First before any further steps, please make a back-up of the original main
Exim configuration file (for instance with the name /etc/exim/exim.conf.orig). Now let’s look inside the content of the
exim configuration file. It is typically compound from the TRANSPORTERS and DIRECTORS sections. In order to configure
exim to use NOD32LS one has to define special DIRECTOR section
DIRECTORS CONFIGURATION
  nod32_director:
   driver = smartuser
   condition = ”${if eq {$received_protocol}{virus-scanned} {0}{1}}”
   transport = nod32_transport
   verify = false

The above section has to be placed as a first entry of the DIRECTORS CONFIGURATIONS section.
One has also define appropriate TRANSPORTER section responsible to deliver e-mail messages to nod32mda agent.

TRANSPORTS CONFIGURATION
  nod32_transport:
   driver = pipe
   command = /usr/bin/nod32mda -oMr virus-scanned $local_

part@$domain
   user = mail
   group = mail

Be sure that the ‘user’ (usually ‘mail’) used in the above setting is listed in a ‘trusted_users’ list for this parameter.
Also be sure that the option ‘qualify_domain’ is undefined or set to your fully qualified domain name. Note that in case
user would like to pass command line parameter to the nod32mda agent it is necessary to define parameter command
in a different way. Agent nod32mda will accept command line parameters only in case the sentence ‘--’ is added before
them. So for instance to pass command line option --user the nod32mda agent the parameter ‘command’ has to be
defined as follows.
command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain -- --user $local_part

In this case agent ‘nod32mda’ will instruct daemon ‘nod32d’ to search special section [user] within the configuration
file. With the above setting we have ensured that all the e-mail messages sent to user belonging to local domain will
now be primarily sent to module nod32mda. Still there remains the second part of the modification to provide that
all messages processed by nod32mda will be sent to the appropriate MAILBOX. In order to do so, we have to modify
the parameter ‘mda_path’ within the section [mda] of the main NOD32LS configuration file (/etc/nod32/nod32.cfg)
in a following way.
mda_path = ”/usr/sbin/exim”

Above we have assumed that the exim binary file is located within a directory /usr/sbin. If this is not the case, please
modify the above parameter as necessary. To accomplish the whole procedure, one has to restart both the MTA Exim
and the daemon nod32d.

5.2.2.6. Setting MTA Exim version 4

An MTA Exim version 4 stores its configuration in the file /etc/exim4/exim4.conf. The procedure described here
will therefore be done only with this one file and of course with the main NOD32LS configuration file (/etc/nod32/
nod32.cfg) . Please, note that the configuration described here is MDA independent by means it can be used in
cooperation with any MDA already working with Postfix MTA. First before any further steps, please make a back-
up of the original main Exim configuration file (for instance with the name /etc/exim4/exim4.conf.orig). Now let’s

chapter 5 / NOD32LS as for Linux Mail servers

24

look inside the content of the exim configuration file. It is typically compound from the TRANSPORTERS and ROUTERS
sections. Usually there should be always ROUTER section responsible for messages local delivery (usually it is called
‘loacaluser’). In order to configure exim to use NOD32LS one has to define special ROUTER section
ROUTER CONFIGURATION
  nod32_router:
   driver = accept
   domains = +local_domains
   condition = ”${if eq {$received_protocol}{virus-scanned} {0}{1}}”
   transport = nod32_transport
   verify = false

and place this section as a first entry of the ROUTERS CONFIGURATION section.
One has also define appropriate TRANSPORT section responsible to deliver e-mail messages to nod32mda agent.

TRANSPORTS CONFIGURATION
  nod32_transport:
   driver = pipe
   command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain
   user = mailnull
   group = mail

Be sure that the ‘user’ (usually ‘mailnull’) is the value of ‘exim_user’ or pick a name from the list ‘trusted_users’ for
this parameter.

Also be sure that the option ‘qualify_domain’ is undefined or set to your fully qualified domain name.
Note that in case user would like to pass command line parameter to the nod32mda agent it is necessary to

define parameter command in a different way. Agent nod32mda will accept command line parameters only in case
the sentence ‘--’ is added before them. So for instance to pass command line option --user the nod32mda agent the
parameter ‘command’ has to be defined as follows.
command = /usr/bin/nod32mda -oMr virus-scanned $local_part@$domain -- --user $local_part

In this case agent ‘nod32mda’ will instruct daemon ‘nod32d’ to search special section [user] within the configuration
file.

With the above setting we have ensured that all the e-mail messages sent to user belonging to local domain will
now be primarily sent to module nod32mda. Still there remains the second part of the modification to provide that
all messages processed by nod32mda will be sent to the appropriate MAILBOX. In order to do so, we have to modify
the parameter ‘mda_path’ within the section [mda] of the main NOD32LS configuration file (/etc/nod32/nod32.cfg)
in a following way.
mda_path = ”/usr/sbin/exim”

Above we have assumed that the exim binary file is located within a directory /usr/sbin. If this is not the case, please
modify the above parameter as necessary. To accomplish the whole procedure, one has to restart both the MTA Exim
and the daemon nod32d.

5.3. Scanning the outbound e-mail messages

Scanning of the outbound e-mail messages is performed at the time of message transmission between the local MUA
and the MTA (as marked by symbol S2 in figure 3-1). A more detailed scheme of the process is shown in the figure 5-2.

The most important part of scanning the outbound messages is done by the nod32smtp filter. This filter is a resident
program (daemon) that performs in general three functions:

NOD32 for Linux Servers

25

*	 receives data via the INET socket,
*	 extracts e-mail/s and feeds nod32d (scanning

daemon) to scan it,
*	 forwards the e-mail to another port or computer.

The nod32smtp uses the SMTP protocol for its
communication. As discussed in the section 4, the
configuration of nod32smtp daemon is specified in section
[smtp] of the main NOD32LS configuration file /etc/
nod32/nod32.cfg. The following parameters are defined:
listen_addr – specify the smtp server address where the

daemon listens to
listen_port – specify the smtp server port where the

daemon listens to
server_addr – specify the smtp server address where the communication will be redirected to
server_port – specify the smtp server port where the communication will be redirected to

The operation principle of scanning an outbound e-mail message is based on the following idea: We configure
a nod32smtp daemon to listen to communication incoming to port 2525 of the email server computer and forward the
scanned communication to port 25 of the same computer where, typically, the MTA daemon listens to. In order to do so,
use the following values of the aforementioned parameters:
listen_addr = ”localhost”
listen_port = 2525
server_addr = ”localhost”
server_port = 25

Once again, an e-mail received via port 2525 will be processed by nod32d (scanning daemon) and afterward
sent to port 25 for further processing by agent MTA of the e-mail messaging system. So far this is just half of the
job. The second part that has to be done is the automatic redirection of all the packets arriving on port 25 of the
server computer to port 2525. If we do not this then no packet of e-mail communication will go through the
nod32smtp daemon as the whole communication from the LAN (Local Area Network) will pass by through port 25.

Thus, in order to do proper rerouting one has to write the following rules for ipchains (resp. iptables):
Kernel 2.2.X:
ipchains -I INPUT -p tcp -s 192.168.1.0/24 -d 0.0.0.0/0 25 -j REDIRECT 2525
Kernel2.4.X:
iptables -I PREROUTING -t nat -p tcp -s 192.168.1.0/24 --dport 25 -j REDIRECT --to-ports 2525

where ipchains (iptables) for kernel 2.2.X (2.4.X) have been used. After applying these rules and starting the
nod32smtp daemon
/sbin/service nod32smtp start

One can see that all the communication arrives to the nod32smtp daemon and everything works correctly, however,
with this setting there is still one unwanted effect. One can easily realize that the port 2525 with this setting provides
an open relay. The point is that now there is a nod32smtp daemon that will accept all the packets that arrive at the port
2525, this also means packets arriving from outside the local network. The daemon nod32smtp will forward this traffic
to port 25. This process will be interpreted by MTA as a local communication on the so called loop-back interface and
therefore will not be rejected by MTA rules.

This problem, however, can be solved by ensuring that all communication with the port 2525 will be disabled with
the exception of the local network. In order to do so we use the following commands:

chapter 5 / NOD32LS as for Linux Mail servers

NOD32D

NOD32SMPT

INTERNET

FILEMTA

TCP port 2525TCP port 25

Local Network 192.168.1.0/24

Figure 5-3. The scheme of the scanning of outbound e-mail
messages by using nod32smtp module.

26

Kernel 2.2.X:
ipchains -I INPUT -p tcp -s ! 192.168.1.0/24 -d 0.0.0.0/0 2525 -j REJECT
Kernel 2.4.X:
iptables -I INPUT -p tcp -s ! 192.168.1.0/24 --dport 2525 -j DROP

5.4. Content filtering in MTA

Content filtering method is currently a well known method used to screen and/or exclude certain defined
information from the Internet or its part. Concerning an e-mail server system the best place to implement content
filtering method is the MTA agent as an e-mail communication traffic nod. The advantage of such an implementation
is that it allows one to scan e-mails inbound as well as outbound in the same implementation algorithm. On the other
hand the content filtering method is MTA dependent. Taking into account the number of different MTAs working in the
present UNIX OS environment, the method is not universal. NOD32LS comes with three content filters built for most
common MTA, i.e. MTA Sendmail, Postfix, Exim and Qmail, described in the following sections.

5.4.1. Content filtering in MTA Postfix

The nod32smtp filter can also serve as a content
filter for MTA Postfix providing the following changes are
implemented:

In section [smtp] of the configuration file: /etc/
nod32/nod32.cfg set:
listen_port = 2526
server_addr = ”localhost”
server_port = 2525

With these settings nod32smtp will listen on port
2526 and will forward all communication from this port
to the local port 2525.

In the next step, modify the /etc/postfix/master.cf file
by adding the following specification into the file:
localhost:2525 inet n - n - - smtpd
  -o content_filter=
  -o myhostname=nod32.yourdomain.com

The value of the parameter myhostname must differ from that set in postfix (postconf myhostname), otherwise
a loop is detected (by postfix) and the e-mail is rejected.

Finally, add
postconf -e ”content_filter = smtp:localhost:2526”

into the postfix configuration file (/etc/postfix/main.cf). The entire process is illustrated in figure 5-3.

5.4.2. Content filtering in MTA Sendmail

The nod32smfi serves as a content filter for MTA Sendmail. It is a third-party program that accesses all the mail
messages being processed by MTA Sendmail and therefore can be used in the bidirectional scanning scenario. In order to
enable filtering, please provide the following line in the section [smfi] of the configuration file: /etc/nod32/nod32.cfg set:

NOD32 for Linux Servers

TCP port 2525

POSTFIX

CLEANUP

PICKUP SMTP

SMTPD LOCAL

QUEUE

TCP port 2526

SMTPD SMTP

NOD32SMPT

Figure 5-4. Bidirectional scanning scheme of an nod32smtp
module working as a content filter.

27

smfi_sock_path = ”/var/run/nod32smfi.sock”
With these settings nod32smfi will communicate with the MTA Sendmail via unix socket /var/run/nod32smfi.sock.

In the next step, modify the /etc/mail/sendmail.cf file by adding the following specification into the section MAIL FILTER
DEFINITIONS:
Xnod32smfi, S=local:/var/run/nod32smfi.sock, F=T, T=S:2m;R:2m;E:5m

With this setting sendmail will communicate with the nod32smfi daemon via local (i.e. unix) socket /var/run/
nod32smfi.sock. Flag F=T will result in temporary fail connection if the filter is unavailable. Flag T=S:2m defines
timeout 2 minutes for sending information from MTA to a filter. Flag T=R:2m defines timeout 2 minutes for reading
reply from the filter. Flag T=E:5m means overall timeout 5 minutes between sending end-of-message to filter and
waiting for the final acknowledgment.
Note: In case the timeouts for the nod32smfi filter are set too small, Sendmail can temporarily reject the message
which will attempt to pass through at a later time. This will lead to the continuous rejection of one and the same
message later. In order to avoid the problem, the timeouts have to be set properly. In order to do this, one has to get into
account ‘confMAX_MESSAGE_SIZE’ parameter defined in a sendmail.mc file that will provide not accepting messages
bigger than the appropriate parameter value (given in bytes). Taking into account this value and the maximum time
for processing of this amount of data by MTA(this can be measured) one can evaluate the appropriate timeouts for
nod32smfi filter. Finally, uncomment and modify the following line in the /etc/mail/sendmail.cf file:
O InputMailFilters=nod32smfi

Since nod32smfi filter can modify the content of the e-mail message body, in case of multiple Sendmail filters, it is
good to put the definition of the nod32smfi filter at the end of the filter chain.

5.4.3. Content filtering in MTA Exim

Configuration of the NOD32LS as an Exim content filter uses similar approach as discussed in the sections devoted
to scanning inbound messages in Exim (general case). Indeed, in order to configure NOD32LS as content filter it is first
necessary to follow the rules from section 5.2.2.5 (in case of Exim 3) or follow the rules from section 5.2.2.6 (in case
of Exim 4). With this initial setting the NOD32LS is configured to scan every e-mail coming to the local recipient. Yet
it is necessary to provide the scanning of the e-mail messages routed to another domains. In case of Exim 3 it is only
necessary to define new ROUTER CONFIGURATIONS section
nod32_router:
  driver = domainlist
  route_list = ”* localhost byname”
  condition = ”${if eq {$received_protocol}{virus-scanned} {0}{1}}”
  transport = nod32_transport
  verify = false

This section has to be placed as first section among all ROUTER CONFIGURATIONS sections. In case of Exim 4 it is only
necessary to comment out the line
domains = +local_domains

from already existing ‘nod32_router’ ROUTERS CONFIGURATIONS section defined by rules in section 5.2.2.6. of this
manual. To accomplish the whole procedure, one has to restart both the MTA Exim and the daemon nod32d.

chapter 5 / NOD32LS as for Linux Mail servers

28

5.4.4. Content filtering in MTA Qmail

Nod32pipe can serve as a content-filter for Qmail. However, you need to download and compile the qmail-qfilter
program, version 2.0 or newer. Following instructions don’t require you to use the QMAILQUEUE patch. We assume your
qmail is installed in /var/qmail. First create the script /var/qmail/bin/qmail-nod32pipe with these contents and run
chmod a+x on it:
#!/bin/sh
  export QQF_QMAILQUEUE=/var/qmail/bin/qmail-queue.nod32save
  exec qmail-qfilter /usr/bin/nod32pipe

Next, rename the file /var/qmail/bin/qmail-queue to /var/qmail/bin/qmailqueue. nod32save and create a soft link /
var/qmail/bin/qmail-queue to the new script /var/qmail/bin/qmail-nod32pipe. In this configuration, in case of infection
or temporary error, nod32pipe will automatically (based on present environment variables) use Qmail’s recognized exit
codes (31, 71 or 99, see the manual page of qmail-queue(8) and qmail-qfilter(1)). It will also ask nod32d to use the user
specific configuration based on the first envelope recipient, like is done in nod32smfi and nod32smtp content filters. To
accomplish the whole procedure, one has to restart the MTA Qmail.

5.5. Alternative methods of scanning e-mails

Although mechanisms described in previous sections are concerned to be the basic mechanisms of the e-mail
messages scanning, there exists yet other possibilities that are all described in this section.

5.5.1. Scanning e-mail messages using AMaViS

AMaViS – A Mail Virus Scanner is a tool that interfaces your MTA and several anti-virus scanners. It supports
Sendmail, qmail, Postfix, Exim and comes in three branches:
amavis – for low/medium mail volume
amavisd – for higher mail volume, daemonized version of amavis
amavisd-new – for higher mail volume, Anti-Spam, ISP features, …

Amavis cooperates with NOD32LS by using its command line interface nod32cli (see the nod32cli manual page
for details). Yet before we go into detailed explanation of the Amavis – NOD32LS configurations, we would like to
discuss the impact of the method on the NOD32LS software functionality. First, one should note that Amavis does not
allow modification of the body of scanned e-mail messages directly by NOD32LS software. Particularly, no infected e-
mail message processed and delivered to the final recipient will be cleaned directly by NOD32LS software. Another
consequence is that no NOD32 footnote will be written into the e-mail body. Another feature of the described method
is that the modification of e-mail header is indirect from the point of view of NOD32LS software. Particularly, status
dependent, header modification directly by NOD32LS is disabled. Taking into account the above statements we
recommend the use of Amavis – NOD32LS configuration (described in the next sections) only in case the above discussed
features of NOD32LS are not requested by the user. However, it is good to keep in mind that using Amavis, because of its
anti-spam features, does not conflict with content filtering methods of NOD32LS (described in section 5.4).

5.5.1.1. amavis

Configuration of Amavis with NOD32LS is performed during the process of Amavis installation. For installation, first
unpack the source amavis-0.x.y.tgz and overwrite the file amavis/av/nod32cli with this contents:

NOD32 for Linux Servers

29

#
ESET Software NOD32 Command Line Interface, Version 2.51
#

if ($nod32cli) {
  do_log(2,”Using $nod32cli”);
  chop($output = ’$nod32cli --subdir $TEMPDIR/parts’);
  $errval = retcode($?);
  do_log(2,$output);
  if ($errval == 0) { # no errors, no viruses found
   $scanner_errors = 0;
  } elsif ($errval == 1 || $errval == 2) {
   # no errors, viruses discovered
   $scanner_errors = 0;
   @virusname = ($output =~ /virus=”([^”]+)”/g);
   do_virus();
  } else {
   do_log(0,”Virus scanner failure: $nod32cli (error code:

$errval)”);
  }
}

Note that the above modification provides accepting of the message only in case it was originally clean. The rest of
non-error states returned by NOD32LS will be treated in a way that the message will be dropped. The messages resolved
by NOD32LS as cleaned/deleted will be dropped as well as nod32cli module has no exclusive access to the message and
therefore is not able to guarantee its cleaning/deletion. Above modification also treats the ”error in archive” status (3)
of nod32cli in a way that the message is rejected. Particularly, messages with the password protected attachment are
treated in this way as NOD32LS cannot mark the messages with the ”not scanned” status. In order to change these default
settings user is free to modify the above text, however, it is not recommended unless he is sure about the consequences.
Please, read the discussion at the end of foreword to this section to get more information on NOD32LS functionality
when configured with Amavis. For successful installation you may need arc, unarj, unrar, zoo, make a symlink in /usr/
bin from uncompress to gzip and create the user amavis in group amavis with home dir /var/amavis. Rename (at least
for the amavis configuration) the file /usr/sbin/nod32 to /usr/sbin/nod32.bak. Now continue with the usual installation
process (./configure, make, make install) and follow the rules README.mta according your mail server.

5.5.1.2. amavisd

Configuration of Amavisd with NOD32LS is performed during the process of Amavisd installation. Unpack the source
amavisd-0.x.tgz and follow the rules for amavis described in previous section of this guide.
Note: After ‘make install’ you may need to move /usr/etc/amavisd.conf to /etc and do a ‘make install’ again. Don’t forget
to run amavisd as user amavis after finishing the installation.

5.5.1.3. amavisd-new

In order to install NOD32LS with Amavisd-new, unpack and install the source amavisd-new-2.x.y.tgz in your
installation directory. Now to configure NOD32LS with newly installed Amavisd-new, delete the clause for ‘ESET

chapter 5 / NOD32LS as for Linux Mail servers

30

Software NOD32’ and replace the clause for ‘ESET Software NOD32 – Client/Server Version’ in file ‘amavisd.conf’ with
the following one:
http://www.nod32.com/
[’ESET Software NOD32 Command Line Interface v 2.51’,
  ’/usr/bin/nod32cli’, ’--subdir {}’,
  [0], [1,2], qr/virus=” ([^”]+)”/],

Please, note the NOD32 scanning status values written within square brackets of the above setting. They are set
to follow the same performance of Amavis – NOD32LS cooperation as defined by default in the section discussing
Amavis configuration. User is free to modify the above text, however, it is not recommended unless he is sure about the
consequences. Please, read end of the foreword to this section and end of the section discussing Amavis configuration
in order to get more information. You may need to install additional perl modules Archive-Tar, Archive-Zip, BerkeleyDB,
Compress-Zlib, Convert-TNEF, Convert-UUlib, IO-stringy, MailTools, MIME-Base64, MIME-tools, Net-Server and Unix-
Syslog from www.cpan.org/modules. The procedure is by each as follows: perl Makefile.PL; make; make install. After
configuring NOD32LS follow the recommendation for configuring Amavisd-new in README.mta located in Amavisd-
new directory according your mail server.

Chapter 6:

NOD32LS as for
Linux File Servers

6  

NO
D3

2L
S a

s f
or

 Li
nu

x
Fi

le
 S

er
ve

rs
.

32

This chapter describes process of configuration of NOD32LS system in order to provide an efficient protection from
virus and worms infection of the file systems by using on-demand and on-access scanning techniques. The NOD32 for
Linux File Servers part of the system is composed from the so called on-demand scanner ‘nod32’ and from two so-called
on-access scanners ‘libnod32pac.so’, ‘nod32dac’. All concerned components are described in the following sections.

6.1. On-demand scanner

On-demand scanner is scanner that can be invoked by privileged user (usually system administrator) using
command line interface or by operating system using periodic command scheduler. This is also an explanation of the
term ‘on-demand’ that the file system objects are scanned on user and/or system demand. Concerning NOD32 on-
demand scanner there are not special requirements for its operation. After proper installation of the NOD32LS package
and after valid license has been provided within ‘/etc/nod32/license’ directory feel free to run on-demand scanner by
using command line interface or scheduler tool. In order to run on-demand scanner from command line the following
syntax is expected
/usr/sbin/nod32 [option(s)] INCL_SCAN_DIR -- -EXCL_SCAN_DIR

where INCL_SCAN_DIR (resp. EXCL_SCAN_DIR) is list of directories and/or files to be scanned (resp. excluded from
scanning). The format of both arguments is colon separated list
”dir1:dir2:dir3:...”

where dir1, dir2, dir3, ... are absolute and/or relative paths to the directories and/or files included into (resp.
excluded from) the list. Multiple command line options are implemented within NOD32 on-demand scanner. To get full
list of them, please, read appropriate manual page for NOD32 on-demand scanner nod32(8). Tip: As indicated already
it is good idea to use on-demand scanner on the regular basis to protect operating system. Next example shows how
to set periodic command scheduler ‘cron’ for running on-demand scanner each day at 3AM. In order to do so one has to
enter the following line into the ‘cron’ table (use statement ‘crontab -e’ for this purpose):
0 3 * * * /usr/sbin/nod32 [option(s)] INCL_SCAN_DIR -- -EXCL_SCAN_DIR

Please note that there is no configuration file interface supported for this module.

6.2. On-access scanner

On-access scanner is scanner invoked by predefined triggered access of user(s) and/or operating system to the file
system objects. This also explains the term ‘on-access’ that the scanner is started on attempt to access selected file system
object. NOD32LS contains two modules implementing on-access scanning technique. First is the onaccess technique
based on interception of the relevant kernel calls (nod32dac). Second technique uses preload library to intercept relevant
calls of the LIBC library (libnod32pac.so). Each of the techniques has its advantages and disadvantages. The technique
based on kernel calls interception is powered by Dazuko (read da-tzu-ko) kernel module. Dazuko project is a Free
software, by means that it is distributed as a free source code, in order to allow users compilation of the kernel module
for their own custom kernels. Note that the Dazuko kernel module is not a part of the NOD32LS package and thus it must
be compiled and installed into the kernel prior the NOD32 on-access scanner (nod32dac daemon) initialization. On the
other hand the Dazuko technique make on-access scanning independent of used file system type. It is also suitable
for controlling file system objects via Network File System (NFS), Nettalk and Samba. The additional instalation of the
Dazuko module can be non-wished for system administrators which carry on the critical systems where source code
and/or configuration file appropriate to the actualy running kernel is not available or the kernel is rather monolitic than
modular. In this case second discussed on-access scanning technique based on the preload LIBC library comes handy.
Before we provide user with the detailed information related with the on-access scanner configuration and operation,

NOD32 for Linux Servers

33

let us make few remarks concerned with the common functionality and use of the on-access scanner.
IMPORTANT: First, we would like to point out that both the on-access scanners are not assumed to provide protection of
whole file system where installed. They have been developed and tested to protect primarily the file systems mounted
externaly. If this is not the case, one should count on exclusion of multiple directories from file access control to prevent
system from hang-up. Typical directory to be excluded in this case is ‘/dev’ directory or variables containing directories
used by NOD32LS, however other directories could be problematic as well. IMPORTANT: Second, it is generaly bad idea
to try run both the described on-access scanners simultaneously, as the system may hang-up.

6.2.1. On-access scanner powered by Dazuko

This section contains information concerned with operation, installation and configuration of on-access scanner
using Dazuko kernel module.

6.2.1.1. Operation principle

On-access scanner ‘nod32dac’ (NOD32 Dazuko powered file Access Controller) is a resident program (daemon)
providing permanent monitoring and control over the file system. It runs as a daemon and can be executed at the
system startup.

Scanning of each file system object is performed upon customizable file access event of the user and/or operating
system. The following file access types are supported by the current version:
ON_OPEN events – This file access type is controlled once first bit of the integer parameter ‘event_mask’ in the main

NOD32 configuration file (section [dac]) is 1. In this case ON_OPEN bit of Dazuko access mask is set on.
ON_CLOSE events – This file access type is controlled once second bit of the integer parameter ‘event_mask’ in the

main NOD32 configuration file (section [dac]) is 1. In this case ON_CLOSE bit and ON_CLOSE_MODIFIED bit of
Dazuko access mask is set on.
Note that some of the kernel versions does not support interception of the ON_CLOSE events. In this case problems

could be detected when running nod32dac module.
ON_EXEC events – This file access type is controlled once third bit of the integer parameter ‘event_mask’ in the main

NOD32 configuration file (section [dac]) is 1. In this case ON_EXEC bit of Dazuko access mask is set on.
By using this mechanism all opened, closed and executed regular files are scanned by daemon nod32d for viruses.

Based on the result of this scanning the access to the files as denied or allowed.

6.2.1.2. Installation and configuration

On-access scanner ‘nod32dac’ (NOD32 Dazuko powered file Access Controller) is a resident program (daemon)
providing permanent monitoring and control over the file system. It runs as a daemon and can be executed at the
system startup. Scanning of each file system object is performed upon customizable file access event of the user or
operating system. It has been already discussed that prior any ‘nod32dac’ initialization so-called Dazuko kernel module
has to be compiled and installed within the running kernel. Note that the following text contains only brief description
concerned with the Dazuko kernel module installation. Therefore it is highly recommended to read the Dazuko how-
to-install documentation (see http://www.dazuko.org/howto-install.shtml) in order to compile and load the Dazuko
module properly into the kernel. Download Dazuko tarball from (http://www.dazuko.org/downloads.shtml). Note that
the NOD32 on-access scanner is compatible with the Dazuko kernel module whose version is equal or higher than 2.1.0.
Therefore the proper behavior of NOD32 on-access scanner running with the older versions of Dazuko kernel module is
not guaranteed. Before compilation of the Dazuko it is necessary to have a source code of actualy running kernel stored
in the kernel source code directory

chapter 6 / NOD32LS as for Linux File servers

34

/usr/src/linux*
Note that it is important to have a version of the kernel source code exactly matching the version of the kernel that is

currently running on the operating system. Even if the kernel source code is present in the kernel source code directory,
be certain that it is properly configured. Read the Dazuko FAQ related to this topic (http://www.dazuko.org/faq.shtml).
Note: When installing dazuko module under 2.6.x Linux kernel, the following must be taken into account:
*	 When running multiple security modules, make sure the „Enable different security modules” is enabled and the

dazuko module is the first security module loaded into kernel. To get more information what has to be done during
kernel configuration, please, read the Dazuko FAQ related to this topic (http://www.dazuko.org/faq.shtml).

*	 The ‘commoncap’ kernel module has to be loaded into kernel prior ‘dazuko’ module.
Generate the Makefile by running:

./configure
within the Dazuko source code directory. Compile Dazuko code with:

make
which will create the ‘dazuko.o’ (‘dazuko.ko’ for 2.6.x Linux kernels) file. If any warnings or errors appeared as

a consequence of the above steps, the Dazuko module was not compiled properly. In this case it is not recommended to
go further over the next steps of this section but rather refer to the appropriate Dazuko documentation (http://www.
dazuko.org/faq.shtml).

Insert the dazuko module into kernel by typing
/sbin/insmod dazuko.o

and check that the module is properly loaded. The check can be done for instance by using:
/sbin/lsmod

or:
cat /proc/modules

In both cases there should be dazuko listed in the output of these commands. Type:
cat /proc/devices

to check whether the dazuko device has been started successfully. The Dazuko with its device major number should
be listed again. Unless the device node is not created automatically, create it with:
mknod -m 600 /dev/dazuko c $(grep dazuko /proc/devices | sed ”s/ .*//”) 0 chown root:root /dev/dazuko

Read and edit [global] and [dac] sections of NOD32 main configuration file ‘/etc/nod32/nod32.cfg’. IMPORTANT:
It is important to note that in order to run nod32dac simultaneously with nod32d scanning daemon it is necessary to
register nod32d daemon with Dazuko kernel module. In order to do so one has to define configuration option
dazuko_support_enabled = yes

within a section [global] of the main NOD32 configuration file. Note also that for the proper run of on-access scanner
it is necessary to define file system objects (i.e. directories and files) that are required to be under control of dazuko
kernel module. This can be achieved via ‘ctl_incl’ and ‘ctl_excl’ con_guration options de_ned within [dac] section of
the con_guration _le. IMPORTANT: Please, don’t remove ‘/dev’ directory from the control of on-access scanner (e.g.
ctl_excl = ”/dev”) unless you know exactly what you are doing, otherwise system can hang up. Run nod32dac daemon
by typing:
/etc/init.d/nod32dac start

6.2.1.3. Tips To provide

Dazuko module loading prior each nod32dac daemon initialization, follow the next steps: Provide copy of Dazuko
module in some of the directories located within the directory reserved for the kernel modules
/lib/modules

NOD32 for Linux Servers

35

Use the kernel utilities depmod and modprobe to handle the dependencies setting and proper loading of the newly
added Dazuko module. Insert the following line into initialization script ‘/etc/init.d/nod32dac’ before the nod32dac
daemon initialization:
/sbin/modprobe dazuko

IMPORTANT: It is highly important to execute the individual steps above exactly in the order as they are written
above. The reason is that in case of kernel module not located within the kernel modules directory, modprobe will not
be able to handle properly loading of the module and the system can hang-up.

6.2.2. On-access scanner using preload libc library

This section contains information concerned with operation, installation and configuration of on-access scanner
using preload library ‘libnod32pac.so’.

6.2.2.1. Operation principle

On-access scanner ‘libnod32pac.so’ (NOD32 Preload library based file Access Controller) is a shared objects library
that is used as a preload library of LIBC and can become functional during the system start-up. It is thus applicable
for file system servers using LIBC calls, for instance ftp server, Samba server etc. Scanning of each file system object is
performed upon customizable file access event of the user and/or operating system. The following file access types are
supported by the current version:
ON_OPEN events – This file access type is controlled once first bit of the integer parameter ‘event_mask’ in the main

NOD32 configuration file (section [pac]) is 1. In this case all ‘open’ or ‘open64’ calls of the LIBC are intercepted.
ON_CLOSE events – This file access type is controlled once second bit of the integer parameter ‘event_mask’ in

the main NOD32 configuration file (section [pac]) is 1. In this case all ‘close’, ‘dup’ and ‘dup2’ calls of the LIBC are
intercepted.
By using this mechanism all opened and closed descriptors tied to regular files are scanned by daemon nod32d for

viruses. Based on the result of this scanning the access to the files is denied or allowed.

6.2.2.2. Installation and configuration

The ‘libnod32pac.so’ installation is done using standard installation mechanism of the preload libraries. One has just
to define the environment variable ‘LD_PRELOAD’ with absolute path pointing to the ‘libnod32pac.so’ library. Please
refer also to the manual page ld.so(8) to get further information. IMPORTANT: It is important to note that the ‘LD_
PRELOAD’ environment variable has to be defined just for the network server daemon process (ftp, samba, etc.) we
would like to have under control. Generally it is not recommended to preload LIBC calls in all operating system processes
as for controlling the selected file system area it is not necessary and it can dramatically slow down the performance of
the system or even cause the system hang-up. In this sense all mechanisms using configuration file ‘/etc/ld.so.preload’
are not correct as well as mechanisms using statement ‘export LD_PRELOAD’. Both would override all relevant LIBC calls
in the whole system that will lead to the system hang-up during its initialization. Thus in order to intercept just relevant
file access calls related with just objects within selected file system area, one has to override an executable statement of
an appropriate network file system server with the following line
LD_PRELOAD=/usr/lib/libnod32pac.so COMMAND 39

where ‘COMMAND’ is the original executable statement. Note also that for the proper run of on-access scanner it
is necessary to define file system objects (i.e. directories and files) that are required to be under control of the preload
library. This can be achieved via ‘ctl_incl’ and ‘ctl_excl’ configuration options defined within [pac] section of the
configuration file.

chapter 6 / NOD32LS as for Linux File servers

6.2.2.3. Tips

In order to provide on-access scanner functionality immediately after network file system server start-up, it is good
to define environment variable ‘LD_PRELOAD’ directly within an appropriate network file server initialization script.
EXAMPLE: Let’s assume we would like to have on-access scanner catching all file system access events immediately
after starting the samba server. Thus within the initialization script concerned with samba daemon (/etc/init.d/smb),
we replace the statement
daemon /usr/sbin/smbd $SMBDOPTIONS

responsible for initialization of smbd daemon by the following line
LD_PRELOAD=/usr/lib/libnod32pac.so daemon /usr/sbin/smbd $SMBDOPTIONS

In this manner selected file system objects controlled by Samba will be checked immediately after Samba
initialization, i.e. during the system start-up.

Chapter 7:

Sample submission system

7  

Sa
m

pl
e

su
bm

iss
io

n
sy

st
em

38 NOD32 for Linux Servers

Sample submission system is functionality that provides catching of the infected objects found by advanced
heuristics method and delivering these objects to the sample submission system server. All virus samples catched by
the sample submission system will be processed by the team of NOD32 virus laboratory department and consequently
added into the NOD32 virus database, if necessary.
Note: According to our License Agreement, by enabling sample submission system You are agreeing to allow the
computer and/or platform on which the nod32d is installed to collect data (which may include personal information
about You and/or the user of the computer) and samples of newly detected viruses or other threats and send them to
our virus lab. This feature is turned off by default. We will only use this information and data to study the threat and will
take reasonable steps to preserve the confidentiality of such information.

In order to turn on this feature, set both parameters samples_enabled and samples_send_enabled in /etc/nod32/
nod32.cfg to yes. Sample submission system is able to send infected samples also via http proxy server with basic
authentication. See the nod32d manual page for details.

Chapter 8:

NOD32 system update and
maintenance

8  

NO
D3

2
sy

st
em

 u
pd

at
e

an
d

m
ai

nt
en

an
ce

40

In order to keep NOD32LS system effective, it is necessary to keep NOD32 virus definitions database up to date. In
the following sections a concept of the NOD32 database update process is described with more in depth details which is
in most cases not necessary to read. Therefore one may wish to skip directly to section 6.3 that can serve in this sense as
a short ‘how-to’ document related to this topic.

8.1. Basic concept of NOD32 system update

Basic concept of the NOD32 system update is to download so called NOD32 modules from the NOD32 server and
compile them in order to provide so called loading modules used by the NOD32 anti-virus scanner. First part of the
process is provided by NOD32 Update Mirror Creator (nod32umc) system utility while compilation of the modules is
done by NOD32 Update (nod32upd) system utility. Both the utilities are part of the NOD32LS system.

8.1.1. NOD32 modules organization

The NOD32 modules introduced above are located by default within
/var/lib/nod32/mirror

directory (so called local mirror directory or default local mirror directory). These modules are divided into two
categories, e.g. engine category and component category (modules of component category are currently only for use on
the Windows operating systems). Currently there are 4 types of engine category modules supported:
*	 base scanning modules (prefix engine) containing virus signatures database,
*	 archives support modules (prefix archs) supporting various file system archive formats,
*	 advanced heuristics modules (prefix advheur) containing implementation of so called advanced heuristics method

of virus and worm detection,
*	 packed worm scanner modules (prefix pwscan). These modules are always necessary for proper running of any

NOD32 anti-virus scanner based application and therefore are all downloaded by default at each download process.
On the other hand the component category modules are platform dependent and language localization dependent

and thus the selection of them has to be specified by the user according to his needs. Download of component category
modules is therefore optional.

Besides the NOD32 modules, the default mirror directory contains so called modules version control file (update.
ver). This file contains relevant information concerning all modules stored in the local mirror directory and is used as
a reference file for generation of further subordinate mirrors. The process of subordinate mirror creation is described in
the section 6.2 in detail.

8.1.2. NOD32 mirror creation

As has already been told, NOD32 update mirror creator (nod32umc) utility is used to download and maintain the
mirror of NOD32 modules storage. Minimal nod32umc configuration requires that you de_ne authentication options
and the absolute path to the directory where the mirror will be created. Authentication options are used to pass to
nod32umc the user name and password (received from vendor) necessary to authenticate the end-user against NOD32
server where the modules are downloaded from. Several scenarios for user authentication against NOD32 server are
supported:
*	 direct user name and password setting into the command line.
*	 setting via an authentication file,
*	 setting via an old featured ‘.netrc’ file.

NOD32 for Linux Servers

41

Please refer also to the nod32umc manual pages for a detailed description of the related command line options. After
proper authentication the modules will be downloaded into a defined mirror directory. There exists also the possibility
to download and update NOD32 modules in the situation where all the communication of the local computer with the
NOD32 server is mediated via http proxy server. Read more on this topic in nod32umc manual pages. In situations when
user authentication is required against the appropriate proxy server, the minimal nod32umc configuration must include
also the proxy authentication options. There are two supported scenarios for user authentication against proxy server:
*	 direct proxy user name and proxy password setting into the command line
*	 setting via a proxy authentication file.

Please, refer also to the nod32umc manual pages for a detailed description of the related command line options.
Note: For security reasons, please use authentication scenarios via authentication files rather than scenarios via typing
the user name(s) and password(s) directly into the command line.

8.1.3. Generation of NOD32 scanner loading modules

In order to create loading modules from those
downloaded by nod32umc one must use the NOD32
Update (nod32upd) system utility (see also nod32upd
manual pages). Minimal configuration for nod32upd is
to define full mirror directory path. The following NOD32
loading modules will be created: base module (nod32.000),
archives support module (nod32.002), advanced heuristics
module (nod32.003) and packed worm scanner module
(nod32.004). One could specify the directory path where
the loading module would be created (so called NOD32
base directory, i.e. directory where the NOD32 anti-virus
scanner will load the modules from). One can choose an
arbitrary directory for this purpose, however, this must
contain nod32.000 module. There is no requirement given
on the version of the module. In case the module is not located in the directory chosen, error 105 will occur. It is recommended
to set NOD32 base directory as ‘/var/lib/nod32’ as this is exactly the default directory where the modules are loaded by
NOD32LS anti-virus scanner from. In case the NOD32 base directory is not chosen by the user it is defined by default as
the current working directory. In case the ‘update.ver’ file located in the mirror directory is not signed by valid digital
signature, error 107 will appear. One can force nod32upd to not check the digital signature of the file by choosing switch
‘--no_signature’. Please refer to the manual pages nod32upd to get detailed information on the command line options.

8.2. Subordinate mirrors creation

After download of NOD32 modules the nod32umc utility will create in the mirror directory the ‘update.ver’ file
containing the information about the modules currently stored in the newly created mirror. The newly created mirror is
a fully functional mirror of NOD32 modules storage and can be used in the process of additional mirrors creation. This
hierarchy allows the user to update all the modules in all the subsequently created mirrors without using, and thus
overloading, one and the same mirror server (see figure 6-1 for details).

At this point we would like you to notice that the creation of the mirror file structure at some computers file system,
is not enough to provide the fully featured NOD32LS mirror. For proper function of the newly created mirror there are

chapter 8 / NOD32 system update and maintenance

MIRROR A

MIRROR B1 MIRROR B2

MIRROR C1 MIRROR C2

Figure 8-1. The scheme of subordinate NOD32 mirrors
creation.With the presented hierarchy it is not necessary to
perform update process of the mirror C1 by tasking the mirror
A which preserves the appropriate server from the overload.

42

additional conditions to be fulfilled. First, as the utility nod32umc uses http protocol to download the NOD32 modules
there must be a http server installed on the computer where the modules are going to be downloaded from. Second, the
NOD32 modules to be downloaded by other computers have to be placed at the directory path
/http-serv-base-path/nod_upd

where http-serv-base-path is a base http server directory path, as this is the first place where nod32umc utility
looks the NOD32 modules for.

8.3. Automatic update of the virus definitions database

The NOD32LS comes with the script
/usr/sbin/nod32_update

used to provide user with a comfortable and reliable service concerned with the process of NOD32 virus signatures
database update.

8.3.1. Structure and use of automatic update script

The script is predefined to download NOD32 modules from the server
http://www.nod32.com

and to create the loading modules used by NOD32 scanner into
/var/lib/nod32

directory. This configuration can be, however, easily changed by simple editing the script in its configuration part.
Even if the script does all the job in most cases without manual intervention into it, one has still to define the user name
and password for NOD32 server authentication prior to using it. By default the update script reads this setting from the
so called ‘authorization file’
/etc/nod32/nod32.auth

that has to be adjusted by the user. The authorization file is an ASCII file with the following format.
username=your_nod32_username
password=your_nod32_password

Please, use your favorite editor to invoke the file and fill its appropriate parts by valid username and password
that you have received from your vendor. From the security reason make sure that the authorization file is publicly
unreadable. If it is not the case change its permission appropriately by typing
chmod 600 /etc/nod32/nod32.auth
into the command line.

8.3.2. Periodic update of the virus definitions database

To provide the highest security for the user, the NOD32 team collects the virus definitions continuously from all
over the world. The new patterns can appear within the database in very short intervals. It is therefore useful, and also
recommended, to trigger an update attempt (by means of executing the nod32_update script) on a regular basis via
periodic scheduler. One hour interval is recommended. In order to do so, configure periodic scheduler (cron) on your
system by entering the following line
0 * * * * /usr/sbin/nod32_update

into its configuration file (crontab). To add the above line into the crontab use command line statement

NOD32 for Linux Servers

Chapter 9:

Tips and tricks

9  

Ti
ps

 a
nd

 tr
ick

s

44

This chapter is devoted to describe tips and tricks concerned with configuration of NOD32LS. This means it describes
configuration of NOD32LS in circumstances when for instance MTA is configured to use other software with similar
functionality or with functionality that could normally lead to misconfiguration of NOD32LS.

9.1. Dropping messages marked by NOD32 as deleted in MTA Postfix

In an Internet has recently appeared nonnegligible increase of the number of the e-mail messages containing
worms. In most cases the infected attachment of such messages cannot be cleaned but rather deleted and whole
messages even does not contain any reasonable information. In such a cases it has sense to discard (or treat in special
way) this kind of messages. Mechanism described in this section can be used to suppress messages marked by NOD32LS
as deleted in MTA Postfix. First of all one has to add the following entry
write_to_header = 1

into section [smtp] of the main NOD32LS configuration file (/etc/nod32/nod32.cfg) . This setting will result in
a modification of each non-clean e-mail message by means the string ‘XNOD32Result: status’ is inserted into header
of the message. Word ‘status’ of the string is replaced by actual status of the scanning process. In order to discard all
messages that has been marked as ‘deleted’ one has to add following line
header_checks = regexp:/etc/postfix/header_checks

into the main Postfix configuration file (/etc/postfix/
main.cf). At the same time one has to create file ‘/etc/
postfix/header_checks’ with the following content.
/^X-NOD32Result: deleted/ DISCARD

To accomplish the whole procedure, one has to restart
MTA Postfix, daemon nod32d and daemon nod32smtp.
Note that in older Postfix versions DISCARD functionality
may not work. In this case warning message ‘Postfix does
not know the command DISCARD’ will appear in the ‘/var/
log/maillog’ file. This can be only solved by update of the
Postfix package.

9.2. NOD32LS and TLS support in MTA

Transport Layer Security (TLS) is a protocol guaranting data privacy in client/server communication over the Internet.
The basic principle of TLS is based on the SSL encryption of data traveling between client and server (We have on our mind
the SMTP communication between MTA client and server). This has of course nonnegligible consequences for scanning
of this kind of communication by NOD32LS. For instance, once TLS support in MTA is enabled, the ‘outbound messages
scanning scenario’ discussed in section 5.3 is impossible as the whole intercepted SMTP communication is encrypted
at this stage. On the other hand, there is possibility to use data encryption in communication between local MTA and
Internet and still use the NOD32LS as a content filter (discussed in section 5.4). In MTA Sendmail content filtering there is
no problem with SMTP TLS support at all as the Sendmail Milter does not relay on the SMTP communication and content
filtering is done rather internally. On the other hand the Postfix uses SMTP protocol for data communication between
content filter and MTA. Therefore once the TLS is enabled in Postfix, the content filtering method fails as whole the
SMTP communication is encrypted. Fortunately, this can be solved on the Postfix TLS configuration level. The situation
is depicted in a figure 7-1.

NOD32 for Linux Servers

POSTFIX

NOD32
Content filter

2525

INTERNET

25

25
2526

MAILBOX

SMPT/TLS

Figure 9-1. Scheme of content filtering in Postfix MTA with
enabled TLS.

45

As is shown in the figure above, once the TLS is enabled, all the SMTP communication channels including SMTP
communication with content filter are affected. The only possibility in this case is to disable the TLS support for
communication between client and server located within localhost. This can be achieved by adding the following line
into the main Postfix configuration file.
smtp_tls_per_site = hash:/etc/postfix/smtp_tls_per_site

In addition it is necessary to create the above file with the following content
localhost NONE

and provide its appropriate hash table. In order to do so, execute the following statement from ‘/etc/postfix’
directory.
postmap hash:smtp_tls_per_site

By using the above statement the ‘/etc/postfix/smtp_tls_per_site.db’ file is created that is used by Postfix to enable
TLS on per site basis. As far as we have disabled TLS for localhost the content filtering can be used and at the same time
the SMTP communication between local MTA and Internet is encrypted.

chapter 9 / Tips and tricks

Chapter 10:

Let us know

10
  

Le

t u
s k

no
w

�� NOD32 for Linux Servers

Dear user, this guide should have given you a good knowledge about how the NOD32LS works and how to configure
it in order to protect your e-mail messaging system with highest efficiency. However, writing a documentation is
a process that is never finished. There will always be some parts of the NOD32LS that can be explained better or are
not even explained at all. Therefore, in case of bugs or inconsistencies found within this documentation, please report
a problem to our support center
http://www.nod32.com.sg/support

or write an e-mail directly to linux development mailing list
<linux@nod32.com>.

Appendix A.

Installed content of
NOD32LS package

Ap
pe

nd
ix

 A
.  

In

st
al

le
d

co
nt

en
t o

f N
OD

32
LS

 p
ac

ka
ge

50 NOD32 for Linux Servers

/etc/init.d/nod32d
/etc/init.d/nod32dac
/etc/init.d/nod32smfi
/etc/init.d/nod32smtp
/etc/nod32/nod32.auth
/etc/nod32/nod32.cfg
/etc/nod32/nod32d_script
/etc/nod32/nod32d_license_warning_script
/etc/nod32/sig_footer_clean.html.example
/etc/nod32/sig_footer_infected.html.example
/etc/nod32/sig_footer_not_scanned.html.example
/etc/nod32/sig_header_clean.html.example
/etc/nod32/sig_header_infected.html.example
/etc/nod32/sig_header_not_scanned.html.example
/usr/bin/nod32mda
/usr/bin/nod32smfi
/usr/bin/nod32smtp
/usr/bin/nod32cli
/usr/sbin/nod32_update
/usr/sbin/nod32d
/usr/sbin/nod32umc
/usr/sbin/nod32upd
/usr/share/doc/nod32ls/copyright
/usr/share/doc/nod32ls/guide.us.txt.gz
/usr/share/man/man1/nod32mda.1.gz
/usr/share/man/man1/nod32smfi.1.gz
/usr/share/man/man1/nod32smtp.1.gz
/usr/share/man/man1/nod32cli.1.gz
/usr/share/man/man5/nod32.5.gz
/usr/share/man/man5/nod32.cfg.5.gz
/usr/share/man/man8/nod32d.8.gz
/usr/share/man/man8/nod32umc.8.gz
/usr/share/man/man8/nod32upd.8.gz
/var/lib/nod32/mirror
/var/cache/nod32

